

Handbook of
Regression Modeling
in People Analytics

http://taylorandfrancis.com

Handbook of
Regression Modeling
in People Analytics

With Examples in R and Python

Keith McNulty

First edition published 2021

by CRC Press
6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742

and by CRC Press
2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

© 2021 Keith McNulty

CRC Press is an imprint of Taylor & Francis Group, LLC

The right of Keith McNulty to be identified as author of this work has been asserted by him in accor-
dance with sections 77 and 78 of the Copyright, Designs and Patents Act 1988.

Reasonable efforts have been made to publish reliable data and information, but the author and pub-
lisher cannot assume responsibility for the validity of all materials or the consequences of their use.
The authors and publishers have attempted to trace the copyright holders of all material reproduced
in this publication and apologize to copyright holders if permission to publish in this form has not
been obtained. If any copyright material has not been acknowledged please write and let us know so
we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information stor-
age or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.
com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA
01923, 978-750-8400. For works that are not available on CCC please contact mpkbookspermis-
sions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks and are
used only for identification and explanation without intent to infringe.

ISBN: 9781032041742 (hbk)
ISBN: 9781032046631 (pbk)
ISBN: 9781003194156 (ebk)

DOI: 10.1201/9781003194156

Typeset in Latin Modern font
by KnowledgeWorks Global Ltd.

http://www.copyright.com/
http://www.copyright.com/
mailto:mpkbookspermissions@tandf.co.uk
mailto:mpkbookspermissions@tandf.co.uk
https://doi.org/10.1201/9781003194156

Contents

Foreword by Alexis Fink xiii

Introduction xv

1 The Importance of Regression in People Analytics 1
1.1 Why is regression modeling so important in people analytics? 2
1.2 What do we mean by ‘modeling’ ? 3

1.2.1 The theory of inferential modeling 3
1.2.2 The process of inferential modeling 5

1.3 The structure, system and organization of this book 6

2 The Basics of the R Programming Language 9
2.1 What is R? . 10
2.2 How to start using R . 10
2.3 Data in R . 11

2.3.1 Data types . 13
2.3.2 Homogeneous data structures 14
2.3.3 Heterogeneous data structures 16

2.4 Working with dataframes . 18
2.4.1 Loading and tidying data in dataframes 18
2.4.2 Manipulating dataframes 22

2.5 Functions, packages and libraries 24
2.5.1 Using functions . 24
2.5.2 Help with functions 25
2.5.3 Writing your own functions 26

DOI: 10.1201/9781003194156-0 v

https://doi.org/10.1201/9781003194156-0

vi Contents

2.5.4 Installing packages . 26
2.5.5 Using packages . 27
2.5.6 The pipe operator . 28

2.6 Errors, warnings and messages 29
2.7 Plotting and graphing . 31

2.7.1 Plotting in base R . 31
2.7.2 Specialist plotting and graphing packages 33

2.8 Documenting your work using R Markdown 34
2.9 Learning exercises . 37

2.9.1 Discussion questions 37
2.9.2 Data exercises . 38

3 Statistics Foundations 39
3.1 Elementary descriptive statistics of populations and samples 40

3.1.1 Mean, variance and standard deviation 40
3.1.2 Covariance and correlation 43

3.2 Distribution of random variables 46
3.2.1 Sampling of random variables 46
3.2.2 Standard errors, the 𝑡-distribution and confidence inter-

vals . 47
3.3 Hypothesis testing . 49

3.3.1 Testing for a difference in means (Welch’s 𝑡-test) . . . 51
3.3.2 Testing for a non-zero correlation between two variables

(𝑡-test for correlation) 54
3.3.3 Testing for a difference in frequency distribution be-

tween different categories in a data set (Chi-square test) 56
3.4 Foundational statistics in Python 58
3.5 Learning exercises . 62

3.5.1 Discussion questions 62
3.5.2 Data exercises . 63

Contents vii

4 Linear Regression for Continuous Outcomes 65
4.1 When to use it . 65

4.1.1 Origins and intuition of linear regression 65
4.1.2 Use cases for linear regression 66
4.1.3 Walkthrough example 67

4.2 Simple linear regression . 69
4.2.1 Linear relationship between a single input and an out-

come . 70
4.2.2 Minimising the error 70
4.2.3 Determining the best fit 73
4.2.4 Measuring the fit of the model 74

4.3 Multiple linear regression . 76
4.3.1 Running a multiple linear regression model and inter-

preting its coefficients 76
4.3.2 Coefficient confidence 77
4.3.3 Model ‘goodness-of-fit’ 78
4.3.4 Making predictions from your model 81

4.4 Managing inputs in linear regression 82
4.4.1 Relevance of input variables 83
4.4.2 Sparseness (‘missingness’) of data 83
4.4.3 Transforming categorical inputs to dummy variables . 84

4.5 Testing your model assumptions 86
4.5.1 Assumption of linearity and additivity 86
4.5.2 Assumption of constant error variance 88
4.5.3 Assumption of normally distributed errors 89
4.5.4 Avoiding high collinearity and multicollinearity between

input variables . 90
4.6 Extending multiple linear regression 93

4.6.1 Interactions between input variables 93
4.6.2 Quadratic and higher-order polynomial terms 96

4.7 Learning exercises . 97
4.7.1 Discussion questions 97

viii Contents

4.7.2 Data exercises . 97

5 Binomial Logistic Regression for Binary Outcomes 101
5.1 When to use it . 102

5.1.1 Origins and intuition of binomial logistic regression . . 102
5.1.2 Use cases for binomial logistic regression 103
5.1.3 Walkthrough example 104

5.2 Modeling probabilistic outcomes using a logistic function . . 106
5.2.1 Deriving the concept of log odds 107
5.2.2 Modeling the log odds and interpreting the coefficients 109
5.2.3 Odds versus probability 110

5.3 Running a multivariate binomial logistic regression model . . 112
5.3.1 Running and interpreting a multivariate binomial logis-

tic regression model 113
5.3.2 Understanding the fit and goodness-of-fit of a binomial

logistic regression model 116
5.3.3 Model parsimony . 120

5.4 Other considerations in binomial logistic regression 122
5.5 Learning exercises . 124

5.5.1 Discussion questions 124
5.5.2 Data exercises . 124

6 Multinomial Logistic Regression for Nominal Category Out-
comes 127
6.1 When to use it . 127

6.1.1 Intuition for multinomial logistic regression 127
6.1.2 Use cases for multinomial logistic regression 128
6.1.3 Walkthrough example 128

6.2 Running stratified binomial models 131
6.2.1 Modeling the choice of Product A versus other products 131
6.2.2 Modeling other choices 133

6.3 Running a multinomial regression model 133
6.3.1 Defining a reference level and running the model . . . 134

Contents ix

6.3.2 Interpreting the model 136
6.3.3 Changing the reference 137

6.4 Model simplification, fit and goodness-of-fit for multinomial lo-
gistic regression models . 138
6.4.1 Gradual safe elimination of variables 138
6.4.2 Model fit and goodness-of-fit 139

6.5 Learning exercises . 140
6.5.1 Discussion questions 140
6.5.2 Data exercises . 141

7 Proportional Odds Logistic Regression for Ordered Category
Outcomes 143
7.1 When to use it . 143

7.1.1 Intuition for proportional odds logistic regression . . . 143
7.1.2 Use cases for proportional odds logistic regression . . . 145
7.1.3 Walkthrough example 145

7.2 Modeling ordinal outcomes under the assumption of propor-
tional odds . 148
7.2.1 Using a latent continuous outcome variable to derive a

proportional odds model 148
7.2.2 Running a proportional odds logistic regression model 150
7.2.3 Calculating the likelihood of an observation being in a

specific ordinal category 153
7.2.4 Model diagnostics . 154

7.3 Testing the proportional odds assumption 155
7.3.1 Sighting the coefficients of stratified binomial models . 156
7.3.2 The Brant-Wald test 157
7.3.3 Alternatives to proportional odds models 158

7.4 Learning exercises . 159
7.4.1 Discussion questions 159
7.4.2 Data exercises . 160

8 Modeling Explicit and Latent Hierarchy in Data 163
8.1 Mixed models for explicit hierarchy in data 164

x Contents

8.1.1 Fixed and random effects 164
8.1.2 Running a mixed model 165

8.2 Structural equation models for latent hierarchy in data . . . 170
8.2.1 Running and assessing the measurement model 173
8.2.2 Running and interpreting the structural model 180

8.3 Learning exercises . 185
8.3.1 Discussion questions 185
8.3.2 Data exercises . 185

9 Survival Analysis for Modeling Singular Events Over Time 187
9.1 Tracking and illustrating survival rates over the study period 189
9.2 Cox proportional hazard regression models 193

9.2.1 Running a Cox proportional hazard regression model . 194
9.2.2 Checking the proportional hazard assumption 196

9.3 Frailty models . 197
9.4 Learning exercises . 200

9.4.1 Discussion questions 200
9.4.2 Data exercises . 201

10 Alternative Technical Approaches in R and Python 203
10.1 ‘Tidier’ modeling approaches in R 204

10.1.1 The broom package . 204
10.1.2 The parsnip package 208

10.2 Inferential statistical modeling in Python 209
10.2.1 Ordinary Least Squares (OLS) linear regression 209
10.2.2 Binomial logistic regression 211
10.2.3 Multinomial logistic regression 212
10.2.4 Structural equation models 213
10.2.5 Survival analysis . 215
10.2.6 Other model variants 218

11 Power Analysis to Estimate Required Sample Sizes for Mod-
eling 221
11.1 Errors, effect sizes and statistical power 222

Contents xi

11.2 Power analysis for simple hypothesis tests 224
11.3 Power analysis for linear regression models 228
11.4 Power analysis for log-likelihood regression models 229
11.5 Power analysis for hierarchical regression models 231
11.6 Power analysis using Python 232

12 Further Exercises for Practice 235
12.1 Analyzing graduate salaries 235

12.1.1 The graduates data set 236
12.1.2 Discussion questions 236
12.1.3 Data exercises . 236

12.2 Analyzing a recruiting process 237
12.2.1 The recruiting data set 238
12.2.2 Discussion questions 238
12.2.3 Data exercises . 239

12.3 Analyzing the drivers of performance ratings 239
12.3.1 The employee_performance data set 240
12.3.2 Discussion questions 240
12.3.3 Data exercises . 241

12.4 Analyzing promotion differences between groups 241
12.4.1 The promotion data set 242
12.4.2 Discussion questions 242
12.4.3 Data exercises . 242

12.5 Analyzing feedback on learning programs 243
12.5.1 The learning data set 243
12.5.2 Discussion questions 244
12.5.3 Data exercises . 244

References 247

Glossary 249

Index 253

Notes on data used in this book

For R and Python users, each of the data sets used in this book can be
downloaded individually by following the code in each chapter. Alternatively
for R users who intend to work through all of the chapters, all data sets
can be loaded into an R session in advance by installing and loading the
peopleanalyticsdata R package.

install peopleanalyticsdata package
install.packages("peopleanalyticsdata")
library(peopleanalyticsdata)

see a list of data sets
data(package = "peopleanalyticsdata")

find out more about a specific data set ('managers' example)
help(managers)

Foreword by Alexis Fink

Over the past decade or so, increases in compute power, emergence of friendly
analytic tools and an explosion of data have created a wonderful opportu-
nity to bring more analytical rigor to nearly every imaginable question. Not
coincidentally, organizations are increasingly looking to apply all that data
and capability to what is typically their greatest area of expense and their
greatest strategic differentiator—their people. For too long, many of the most
critical decisions in an organization—people decisions—had been guided by
gut instinct or borrowed ‘best practices’ and the democratization of people an-
alytics opened up enticing pathways to fix that. Suddenly, analysts who were
originally interested in data problems began to be interested in people prob-
lems, and HR professionals who had dedicated their careers to solving people
problems needed more sophisticated analysis and data storytelling to make
their cases and to refine their approaches for greater efficiency, effectiveness
and impact.

Doing data work with people in organizations has complexities that some
other types of data work doesn’t. Often, the employee populations are rel-
atively smaller than data sets used in other areas, sometimes limiting the
methods that can be used. Various regulatory requirements may dictate what
data can be gathered and used, and what types of evidence might be required
for various programs or people strategies. Human behavior and organizations
are sufficiently complex that typically, multiple factors work together in influ-
encing an outcome. Effects can be subtle or meaningful only in combination,
or difficult to tease apart. While in many disciplines, prediction is the most
important aim, for most people analytics projects and practitioners, under-
standing why something is happening is critical.

While the universe of analytical approaches is wonderful and vast, the best
‘Swiss army knife’ we have in people analytics is regression. This volume is
an accessible, targeted work aimed directly at supporting professionals doing
people analytics work. I’ve had the privilege of knowing and respecting Keith
McNulty for many years – he is the rare and marvelous individual who is deeply
expert in the mechanics of data and analytics, curious about and steeped in
the opportunities to improve the effectiveness and well-being of people at work,
and a gifted teacher and storyteller. He is among the most prolific standard-
bearers for people analytics. This new open-source volume is in keeping with
many years of contributions to the practice of understanding people at work.

DOI: 10.1201/9781003194156-0 xiii

https://doi.org/10.1201/9781003194156-0

xiv Foreword by Alexis Fink

After nearly 30 years of doing people analytics work and the privilege of
leading people analytics teams at several leading global organizations, I am
still excited by the problems we get to solve, the insights we get to spawn,
and the tremendous impact we can have on organizations and the people that
comprise them. This work is human and technical and important and exciting
and deeply gratifying. I hope that you will find this Handbook of Regression
Modeling in People Analytics helps you uncover new truths and create positive
impacts in your own work.

Alexis A. Fink
December 2020

Alexis A. Fink, PhD is a leading figure in people analytics and has led
major people analytics teams at Microsoft and Intel before her current role as
Vice President of People Analytics and Workforce Strategy at Facebook. She is
a Fellow of the Society for Industrial and Organizational Psychology and is a
frequent author, journal editor and research leader in her field.

Introduction

As a fresh-faced undergraduate in mathematics in the 1990s, I took an intro-
ductory course in statistics in my first term. I would never take another. I
struggled with the subject, scored my lowest grade in it and swore I would
never go anywhere near it again.

How wrong I was. Today I live and breathe statistics. How did that happen?

Firstly, statistics is about solving real-world problems, and amazingly there
was not a single mention of a relatable problem from real life in that course I
took all those years ago, just abstract mathematics. Nowadays, I know from
my work and my personal learning activities that the mathematics has no
meaning without a motivating problem to apply it to, and you’ll see example
problems all through this book.

Secondly, statistics is all about data, and working with real data has encour-
aged me to reengage with statistics and come at it from a different angle—
bottom-up you could say. Suddenly all those concepts that were put up on
whiteboards using abstract formulas now had real meaning and consequence
to the data I was working with. For me, real data helps statistical theory
come to life, and this book is supported by numerous data sets designed for
the reader to engage with.

But one more step solidified my newfound love of statistics, and that was when
I put regression modeling into practice. Faced with data sets that I initially
believed were just far too messy and random to be able to produce genuine
insights, I progressively became more and more fascinated by how regression
can cut through the messiness, compartmentalize the randomness and lead
you straight to inferences that are often surprising both in their clarity and
in their conclusions.

Hence my motivation for writing this book, which is to give others—whether
working in people analytics or otherwise—a starting point for a practical learn-
ing of regression methods, with the hope that they will see immediate appli-
cations to their work and take advantage of a much-underused toolkit that
provides strong support for evidence-based practice.

I am a mathematician who is now a practitioner of analytics. For this rea-
son you should see that this book is neither afraid of nor obsessed with the
mathematics of the methodologies covered. It is my general observation that

DOI: 10.1201/9781003194156-0 xv

https://doi.org/10.1201/9781003194156-0

xvi Introduction

many students and practitioners make the mistake of trying to run multivari-
ate models without even a basic understanding of the underlying mathematics
of those models, and I find it very difficult to see how they can be credible in
responding to a wide range of questions or critique about their work without
such an understanding. That said, it is also not necessary for students and
practitioners to understand the deepest levels of theory in order to be fluent
in running and interpreting multivariate models. In this book I have tried to
limit the mathematical exposition to a level that allows confident and fluent
execution and interpretation.

I subscribe strongly to the principles of open source sharing of knowledge. If
you want to reference the material in this book or use the exercises or data
sets in trainings or classes, you are free to do so and you do not need to request
my permission. I only ask that you make reference to this book as the source.

I expect this book to improve over time. If you found this book or any part of
it helpful to solving a problem, I’d love to hear about it. If you have comments
to improve or question any aspect of the contents of this book I encourage
you to leave an issue1 on its Github repository. This is the most reliable way
for me to see your comment. I promise to consider all comments and input,
but I do have to make a personal judgment about whether they are helpful to
the aims and purpose of this book. If I do make changes or additions based
on your input I will make a point to acknowledge your contribution in future
editions.

I would like to thank the following individuals who have reviewed or con-
tributed to this book at some point during its development: Liz Romero, Alex
LoPilato, Kevin Jaggs, Seth Saavedra. My sincere thanks to Alexis Fink for
drawing on her years of people analytics experience to set the context for this
book in her foreword. My thanks to the people analytics community for their
constant encouragement and support in sharing theory, content and method,
and to the R community for all the work they do in giving us amazing and
constantly improving statistical tools to work with. Finally, I would like to
thank my family for their patience and understanding on the evenings and
weekends I dedicated to the writing of this book, and for tolerating far too
much dinner conversation on the topic of statistics.

Keith McNulty
December 2020

1https://github.com/keithmcnulty/peopleanalytics-regression-book/issues

https://github.com/

1
The Importance of Regression in People
Analytics

In the 19th century, when Francis Galton first used the term ‘regression’ to
describe a statistical phenomenon (see Chapter 4), little did he know how
important that term would be today. Many of the most powerful tools of
statistical inference that we now have at our disposal can be traced back to
the types of early analysis that Galton and his contemporaries were engaged in.
The sheer number of different regression-related methodologies and variants
that are available to researchers and practitioners today is mind-boggling, and
there are still rich veins of ongoing research that are focused on defining and
refining new forms of regression to tackle new problems.

Neither could Galton have imagined the advent of the age of data we now live
in. Those of us (like me) who entered the world of work even as recently as 20
years ago remember a time when most problems could not be expected to be
solved using a data-driven approach, because there simply was no data. Things
are very different now, with data being collected and processed all around us
and available to use as direct or indirect measures of the phenomena we are
interested in.

Along with the growth in data that we have seen in recent years, we have also
seen a rapid growth in the availability of statistical tools—open source and free
to use—that fundamentally change how we go about analytics. Gone are the
clunky, complex, repeated steps on calculators or spreadsheets. In their place
are lean statistical programming languages that can implement a regression
analysis in milliseconds with a single line of code, allowing us to easily run
and reproduce multivariate analysis at scale.

So given that we have access to well-developed methodology, rich sources of
data and readily accessible tools, it is somewhat surprising that many ana-
lytics practitioners have a limited knowledge and understanding of regression
and its applications. The aim of this book is to encourage inexperienced ana-
lytics practitioners to ‘dip their toes’ further into the wide and varied world
of regression in order to deliver more targeted and precise insights to their
organizations and stakeholders on the problems they are most interested in.
While the primary subject matter focus of this book is the analysis of people-
related phenomena, the material is easily and naturally transferable to other

DOI: 10.1201/9781003194156-1 1

https://doi.org/10.1201/9781003194156-1

2 1 The Importance of Regression in People Analytics

disciplines. Therefore this book can be regarded as a practical introduction to
a wide range of regression methods for any analytics student or practitioner.

It is my firm belief that all people analytics professionals should have a strong
understanding of regression models and how to implement and interpret them
in practice, and my aim with this book is to provide those who need it with
help in getting there. In this chapter we will set the scene for the technical
learning in the remainder of the book by outlining the relevance of regression
models in people analytics practice. We also touch on some general inferential
modeling theory to set a context for later chapters, and we provide a preview
of the contents, structure and learning objectives of this book.

1.1 Why is regression modeling so important in people
analytics?

People analytics involves the study of the behaviors and characteristics of
people or groups in relation to important business, organizational or institu-
tional outcomes. This can involve both qualitative methods and quantitative
methods, but if data is available related to a particular topic of interest, then
quantitative methods are almost always considered important. With such a
specific focus on outcomes, any analyst working in people analytics will fre-
quently need to model these outcomes both to understand what influences
them and to potentially predict them in the future.

Modeling an outcome with the primary goal of understanding what influences
it can be quite a different matter to modeling an outcome with the primary
goal of predicting if it will happen in the future. If we need to understand what
influences an outcome, we need to get inside a model and construct a formula
or structure to infer how each variable acts on that outcome, we need to get
a sense of which variables are meaningful or not, and we need to quantify the
‘explainability’ of the outcome based on our variables. If our primary aim is
to predict the outcome, getting inside the model is less important because
we don’t have to explain the outcome, we just need to be confident that it
predicts accurately.

A model constructed to understand an outcome is often called an inferential
model. Regression models are the most well-known and well-used inferential
models available, providing a wide range of measures and insights that help
us explain the relationship between our input variables and our outcome of
interest, as we shall see in later chapters of this book.

The current reality in the field of people analytics is that inferential mod-
els are more required than predictive models. There are two reasons for this.

1.2 What do we mean by ‘modeling’ ? 3

First, data sets in people analytics are rarely large enough to facilitate sat-
isfactory prediction accuracy, and so attention is usually shifted to inference
for this reason alone. Second, in the field of people analytics, decisions often
have a real impact on individuals. Therefore, even in the rare situations where
accurate predictive modeling is attainable, stakeholders are unlikely to trust
the output and bear the consequences of predictive models without some sort
of elementary understanding of how the predictions are generated. This re-
quires the analyst to consider inference power as well as predictive accuracy
in selecting their modeling approach. Again, many regression models come
to the fore because they are commonly able to provide both inferential and
predictive value.

Finally, the growing importance of evidence-based practice in many clinical
and professional fields has generated a need for more advanced modeling skills
to satisfy rising demand for quantitative evidence from decision makers. In
people-related fields such as human resources, many varieties of specialized
regression-based models such as survival models or latent variable models
have crossed from academic and clinical settings into business settings in recent
years, and there is an increasing need for qualified individuals who understand
and can implement and interpret these models in practice.

1.2 What do we mean by ‘modeling’ ?

The term ‘modeling’ has a very wide range of meaning in everyday life and
work. In this book we are focused on inferential modeling, and we define that as
a specific form of statistical learning, which tries to discover and understand a
mathematical relationship between a set of measurements of certain constructs
and a measurement of an outcome of interest, based on a sample of data on
each. Modeling is both a concept and a process.

1.2.1 The theory of inferential modeling

We will start with a theoretical description and then provide a real example
from a later chapter to illustrate.

Imagine we have a population 𝒫 for which we believe there may be a non-
random relationship between a certain construct or set of constructs 𝒞 and a
certain measurable outcome 𝒪. Imagine that for a certain sample 𝑆 of obser-
vations from 𝒫, we have a collection of data which we believe measure 𝒞 to
some acceptable level of accuracy, and for which we also have a measure of
the outcome 𝒪.

4 1 The Importance of Regression in People Analytics

By convention, we denote the set of data that measure 𝒞 on our sample 𝑆 as
𝑋 = 𝑥1, 𝑥2, … , 𝑥𝑝, where each 𝑥𝑖 is a vector (or column) of data measuring
at least one of the constructs in 𝒞. We denote the set of data that measure 𝒪
on our sample set 𝑆 as 𝑦. An upper-case 𝑋 is used because the expectation
is that there will be several columns of data measuring our constructs, and a
lower-case 𝑦 is used because the expectation is that the outcome is a single
column.

Inferential modeling is the process of learning about a relationship (or lack of
relationship) between the data in 𝑋 and 𝑦 and using that to describe a rela-
tionship (or lack of relationship) between our constructs 𝒞 and our outcome
𝒪 that is valid to a high degree of statistical certainty on the population 𝒫.
This process may include:

• Testing a proposed mathematical relationship in the form of a function,
structure or iterative method

• Comparing that relationship against other proposed relationships
• Describing the relationship statistically
• Determining whether the relationship (or certain elements of it) can be

generalized from the sample set 𝑆 to the population 𝒫
When we test a relationship between 𝑋 and 𝑦, we acknowledge that data
and measurements are imperfect and so each observation in our sample 𝑆
may contain random error that we cannot control. Therefore we define our
relationship as:

𝑦 = 𝑓(𝑋) + 𝜖
where 𝑓 is some transformation or function of the data in 𝑋 and 𝜖 is a random,
uncontrollable error.

𝑓 can take the form of a predetermined function with a formula defined on
𝑋, like a linear function for example. In this case we can call our model a
parametric model. In a parametric model, the modeled value of 𝑦 is known
as soon as we know the values of 𝑋 by simply applying the formula. In a
non-parametric model, there is no predetermined formula that defines the
modeled value of 𝑦 purely in terms of 𝑋. Non-parametric models need further
information in addition to 𝑋 in order to determine the modeled value of 𝑦—for
example the value of 𝑦 in other observations with similar 𝑋 values.

Regression models are designed to derive 𝑓 using estimation based on statis-
tical likelihood and expectation, founded on the theory of the distribution
of random variables. Regression models can be both parametric and non-
parametric, but by far the most commonly used methods (and the majority
of those featured in this book) are parametric. Because of their foundation in
statistical likelihood and expectation, they are particularly suited to helping

1.2 What do we mean by ‘modeling’ ? 5

answer questions of generalizability—that is, to what extent can the relation-
ship being observed in the sample 𝑆 be inferred for the population 𝒫, which
is usually the driving force in any form of inferential modeling.

Note that there is a difference between establishing a statistical relationship
between 𝒞 and 𝒪 and establishing a causal relationship between the two. This
can be a common trap that inexperienced statistical analysts fall into when
communicating the conclusions of their modeling. Establishing that a relation-
ship exists between a construct and an outcome is a far cry from being able
to say that one causes the other. This is the common truism that ‘correlation
does not equal causation’ .

To bring our theory to life, consider the walkthrough example in Chapter 4 of
this book. In this example, we discuss how to establish a relationship between
the academic results of students in the first three years of their education
program and their results in the fourth year. In this case, our population 𝒫 is
all past, present and future students who take similar examinations, and our
sample 𝑆 is the students who completed their studies in the past three years.
𝑋 = 𝑥1, 𝑥2, 𝑥3 are each of the three scores from the first three years, and 𝑦
is the score in the fourth year. We test 𝑓 to be a linear relationship, and we
establish that such a relationship can be generalized to the entire population
𝒫 with a substantial level of statistical confidence1.

Almost all our work in this book will refer to the variables 𝑋 as input variables
and the variable 𝑦 as the outcome variable. There are many other common
terms for these which you may find in other sources—for example 𝑋 are often
known as independent variables or covariates while 𝑦 is often known as a
dependent or response variable.

1.2.2 The process of inferential modeling

Inferential modeling—regression or otherwise—is a process of numerous steps.
Typically the main steps are:

1. Defining the outcome of interest 𝒪 and the input constructs 𝒞 based
on a broader evidence-based objective

2. Confirming that 𝒪 has reliable measurement data
3. Determining which data can be used to measure 𝒞
4. Determining a sample 𝑆 and collecting, refining and cleaning data.
5. Performing exploratory data analysis (EDA) and proposing a set of

models to test for 𝑓
6. Putting the data in an appropriate format for each model

1We also determine that 𝑥1 (the first-year examination score) plays no significant role in
𝑓 and that introducing some non-linearity into 𝑓 further improves the statistical accuracy
of the inferred relationship.

6 1 The Importance of Regression in People Analytics

7. Running the models
8. Interpreting the outputs and performing model diagnostics
9. Selecting an optimal model or models

10. Articulating the inferences that can be generalized to apply to 𝒫

This book is primarily focused on steps 7–10 of this process2. That is not to
say that steps 1–6 are not important. Indeed these steps are critical and often
loaded with analytic traps. Defining the problem, collecting reliable measures
and cleaning and organizing data are still the source of much pain and angst
for analysts, but these topics are for another day.

1.3 The structure, system and organization of this book

The purpose of this book is to put inexperienced practitioners firmly on a
path to the confident and appropriate use of regression techniques in their
day-to-day work. This requires enough of an understanding of the underlying
theory so that judgments can be made about results, but also a practical set
of steps to help practitioners apply the most common regression methods to
a variety of typical modeling scenarios in a reliable and reproducible way.

In most chapters, time is spent on the underlying mathematics. Not to the
degree of an academic theorist, but enough to ensure that the reader can
associate some mathematical meaning to the outputs of models. While it may
be tempting to skip the math, I strongly recommend against it if you intend
to be a high performer in your field. The best analysts are those who can
genuinely understand what the numbers are telling them.

The statistical programming language R is used for most of the practical
demonstration in each chapter. Because R is open source and particularly
well geared to inferential statistics, it is an excellent choice for those whose
work involves a lot of inferential analysis. In later chapters, we show imple-
mentations of all of the available methodologies in Python, which is also a
powerful open source tool for this sort of work.

Each chapter involves a walkthrough example to illustrate the specific method
and to allow the reader to replicate the analysis for themselves. The exercises
at the end of each chapter are designed so that the reader can try the same
method on a different data set, or a different problem on the same data set,
to test their learning and understanding. In the final chapter, a series of data
sets and exercises are provided with limited instruction in order to give the
reader an opportunity to test their overall knowledge in selecting and applying

2The book also addresses Steps 5 and 6 in some chapters.

1.3 The structure, system and organization of this book 7

regression methods to a variety of people analytics data sets and problems. All
in all, sixteen different data sets are used as walkthrough or exercise examples,
and all of these data sets are fictitious constructions unless otherwise indicated.
Despite the fiction, they are deliberately designed to present the reader with
something resembling how the data might look in practice, albeit cleaner and
more organized.

The chapters of this book are arranged as follows:

• Chapter 2 covers the basics of the R programming language for those who
want to attempt to jump straight in to the work in subsequent chapters
but have very little R experience. Experienced R programmers can skip this
chapter.

• Chapter 3 covers the essential statistical concepts needed to understand
multivariate regression models. It also serves as a tutorial in univariate and
bivariate statistics illustrated with real data. If you need help developing
a decent understanding of descriptive statistics, random distribution and
hypothesis testing, this is an important chapter to study.

• Chapter 4 covers linear regression and in the course of that introduces many
other foundational concepts. The walkthrough example involves modeling
academic results from prior results. The exercises involve modeling income
levels based on various work and demographic factors.

• Chapter 5 covers binomial logistic regression. The walkthrough example in-
volves modeling promotion likelihood based on performance metrics. The
exercises involve modeling charitable donation likelihood based on prior do-
nation behavior and demographics.

• Chapter 6 covers multinomial regression. The walkthrough example and
exercise involves modeling the choice of three health insurance products by
company employees based on demographic and position data.

• Chapter 7 covers ordinal regression. The walkthrough example involves mod-
eling in-game disciplinary action against soccer players based on prior disci-
pline and other factors. The exercises involve modeling manager performance
based on varied data.

• Chapter 8 covers modeling options for data with explicit or latent hierarchy.
The first part covers mixed modeling and uses a model of speed dating
decisions as a walkthrough and example. The second part covers structural
equation modeling and uses a survey for a political party as a walkthrough
example. The exercises involve modeling latent variables in an employee
engagement survey.

• Chapter 9 covers survival analysis, Cox proportional hazard regression and
frailty models. The chapter uses employee attrition as a walkthrough exam-
ple and exercise.

• Chapter 10 outlines alternative technical approaches to regression modeling
in both R and Python. Models from previous chapters are used to illustrate
these alternative approaches.

• Chapter 11 covers power analysis, focusing in particular on estimating the

8 1 The Importance of Regression in People Analytics

required minimum sample sizes in establishing meaningful inferences for
both simple statistical tests and multivariate models. Examples related to
experimental studies are used to illustrate, such as concurrent validity stud-
ies of selection instruments. Example implementations in R and Python are
outlined.

• Chapter 12 is a set of problems and data sets which will allow the reader to
practice the skills they have learned in this book and apply them to a vari-
ety of people analytics domains such as recruiting, performance, promotion,
compensation and learning. Sets of discussion questions and data exercises
will guide the reader through each problem, but these are designed in a way
that encourages the independent selection and application of the methods
covered in this book. These data sets, problems and exercises would suit as
homework material for classes in statistical modeling or people analytics.

2
The Basics of the R Programming Language

Most of the work in this book is implemented in the R statistical program-
ming language which, along with Python, is one of the two languages that I
use in my day-to-day statistical analysis. Sample implementations in Python
are also provided at various points in the book. I have made efforts to keep
the code as simple as possible, and I have tried to avoid the use of too many
external packages. For the most part, readers should see (especially in the ear-
lier chapters) that code blocks are short and simple, relying wherever possible
on base R functionality. No doubt there are neater and more effective ways to
code some of the material in this book using a wide array of R packages—and
some of these are illustrated in Chapter 10—but my priority has been to keep
the code simple, consistent and easily reproducible.

For those who wish to follow the method and theory without the implemen-
tations in this book, there is no need to read this chapter. However, the style
of this book is to use implementation to illustrate theory and practice, and so
tolerance of many code blocks will be necessary as you read onward.

For those who wish to simply replicate the models as quickly as possible, full
code is provided throughout this book by means of interspersed code blocks.
Assuming all the required external packages have been installed, these code
blocks should all be transportable and immediately usable. For those who
are extra-inquisitive and want to explore how I constructed graphics used for
illustration (for which code is usually not displayed), the best place to go is
the Github repository1 for this book.

This chapter is for those who wish to learn the methods in this book but
do not know how to use R. However, it is not intended to be a full tutorial
on R. There are many more qualified individuals and existing resources that
would better serve that purpose—in particular I recommend Wickham and
Grolemund (2016). It is recommended that you consult these resources and
become comfortable with the basics of R before proceeding into the later
chapters of this book. However, acknowledging that many will want to dive
in sooner rather than later, this chapter covers the absolute basics of R that
will allow the uninitiated reader to proceed with at least some orientation.

1https://github.com/keithmcnulty/peopleanalytics-regression-book

DOI: 10.1201/9781003194156-2 9

https://github.com/
https://doi.org/10.1201/9781003194156-1

10 2 The Basics of the R Programming Language

2.1 What is R?

R is a programming language that was originally developed by and for statis-
ticians, but in recent years its capabilities and the environments in which
it is used have expanded greatly, with extensive use nowadays in academia
and the public and private sectors. There are many advantages to using a
programming language like R. Here are some:

1. It is completely free and open source.
2. It is faster and more efficient with memory than popular graphical

user interface analytics tools.
3. It facilitates easier replication of analysis from person to person

compared with many alternatives.
4. It has a large and growing global community of active users.
5. It has a large and rapidly growing universe of packages, which are

all free and which provide the ability to do an extremely wide range
of general and highly specialized tasks, statistical and otherwise.

There is often heated debate about which tools are better for doing non-
trivial statistical analysis. I personally find that R provides the widest array
of resources for those interested in inferential modeling, while Python has
a more well-developed toolkit for predictive modeling and machine learning.
Since the primary focus of this book is inferential modeling, the in-depth
walkthroughs are coded in R.

2.2 How to start using R

Just like most programming languages, R itself is an interpreter which receives
input and returns output. It is not very easy to use without an IDE. An IDE is
an Integrated Development Environment, which is a convenient user interface
allowing an R programmer to do all their main tasks including writing and
running R code, saving files, viewing data and plots, integrating code into
documents and many other things. By far the most popular IDE for R is
RStudio. An example of what the RStudio IDE looks like can be seen in
Figure 2.1.

To start using R, follow these steps:

1. Download and install the latest version of R from https://www.r-
project.org/. Ensure that the version suits your operating system.

https://www.rproject.org/
https://www.rproject.org/

2.3 Data in R 11

FIGURE 2.1: The RStudio IDE

2. Download the latest version of the RStudio IDE from
https://rstudio.com/products/rstudio/ and view the video on
that page to familiarize yourself with its features.

3. Open RStudio and play around.

The initial stages of using R can be challenging, mostly due to the need to
become familiar with how R understands, stores and processes data. Extensive
trial and error is a learning necessity. Perseverance is important in these early
stages, as well as an openness to seek help from others either in person or via
online forums.

2.3 Data in R

As you start to do tasks involving data in R, you will generally want to store
the things you create so that you can refer to them later. Simply calculating
something does not store it in R. For example, a simple calculation like this
can be performed easily:

https://rstudio.com/

12 2 The Basics of the R Programming Language

3 + 3

[1] 6

However, as soon as the calculation is complete, it is forgotten by R because
the result hasn’t been assigned anywhere. To store something in your R session,
you will assign it a name using the <- operator. So I can assign my previous
calculation to an object called my_sum, and this allows me to access the value
at any time.

store the result
my_sum <- 3 + 3

now I can work with it
my_sum + 3

[1] 9

You will see above that you can comment your code by simply adding a # to
the start of a line to ensure that the line is ignored by the interpreter.

Note that assignment to an object does not result in the value being displayed.
To display the value, the name of the object must be typed, the print()
command used or the command should be wrapped in parentheses.

show me the value of my_sum
my_sum

[1] 6

assign my_sum + 3 to new_sum and show its value
(new_sum <- my_sum + 3)

[1] 9

2.3 Data in R 13

2.3.1 Data types

All data in R has an associated type, to reflect the wide range of data that R
is able to work with. The typeof() function can be used to see the type of a
single scalar value. Let’s look at the most common scalar data types.

Numeric data can be in integer form or double (decimal) form.

integers can be signified by adding an 'L' to the end
my_integer <- 1L
my_double <- 6.38

typeof(my_integer)

[1] "integer"

typeof(my_double)

[1] "double"

Character data is text data surrounded by single or double quotes.

my_character <- "THIS IS TEXT"
typeof(my_character)

[1] "character"

Logical data takes the form TRUE or FALSE.

my_logical <- TRUE
typeof(my_logical)

[1] "logical"

14 2 The Basics of the R Programming Language

2.3.2 Homogeneous data structures

Vectors are one-dimensional structures containing data of the same type and
are notated by using c(). The type of the vector can also be viewed using
the typeof() function, but the str() function can be used to display both the
contents of the vector and its type.

my_double_vector <- c(2.3, 6.8, 4.5, 65, 6)
str(my_double_vector)

num [1:5] 2.3 6.8 4.5 65 6

Categorical data—which takes only a finite number of possible values—can
be stored as a factor vector to make it easier to perform grouping and manip-
ulation.

categories <- factor(
c("A", "B", "C", "A", "C")

)

str(categories)

Factor w/ 3 levels "A","B","C": 1 2 3 1 3

If needed, the factors can be given order.

character vector
ranking <- c("Medium", "High", "Low")
str(ranking)

chr [1:3] "Medium" "High" "Low"

turn it into an ordered factor
ranking_factors <- ordered(
ranking, levels = c("Low", "Medium", "High")

)

str(ranking_factors)

2.3 Data in R 15

Ord.factor w/ 3 levels "Low"<"Medium"<..: 2 3 1

The number of elements in a vector can be seen using the length() function.

length(categories)

[1] 5

Simple numeric sequence vectors can be created using shorthand notation.

(my_sequence <- 1:10)

[1] 1 2 3 4 5 6 7 8 9 10

If you try to mix data types inside a vector, it will usually result in type
coercion, where one or more of the types are forced into a different type to
ensure homogeneity. Often this means the vector will become a character
vector.

numeric sequence vector
vec <- 1:5
str(vec)

int [1:5] 1 2 3 4 5

create a new vector containing vec and the character "hello"
new_vec <- c(vec, "hello")

numeric values have been coerced into their character equivalents
str(new_vec)

chr [1:6] "1" "2" "3" "4" "5" "hello"

But sometimes logical or factor types will be coerced to numeric.

16 2 The Basics of the R Programming Language

attempt a mixed logical and numeric
mix <- c(TRUE, 6)

logical has been converted to binary numeric (TRUE = 1)
str(mix)

num [1:2] 1 6

try to add a numeric to our previous categories factor vector
new_categories <- c(categories, 1)

categories have been coerced to background integer representations
str(new_categories)

num [1:6] 1 2 3 1 3 1

Matrices are two-dimensional data structures of the same type and are built
from a vector by defining the number of rows and columns. Data is read into
the matrix down the columns, starting left and moving right. Matrices are
rarely used for non-numeric data types.

create a 2x2 matrix with the first four integers
(m <- matrix(c(1, 2, 3, 4), nrow = 2, ncol = 2))

[,1] [,2]
[1,] 1 3
[2,] 2 4

Arrays are n-dimensional data structures with the same data type and are
not used extensively by most R users.

2.3.3 Heterogeneous data structures

Lists are one-dimensional data structures that can take data of any type.

2.3 Data in R 17

my_list <- list(6, TRUE, "hello")
str(my_list)

List of 3
$: num 6
$: logi TRUE
$: chr "hello"

List elements can be any data type and any dimension. Each element can be
given a name.

new_list <- list(
scalar = 6,
vector = c("Hello", "Goodbye"),
matrix = matrix(1:4, nrow = 2, ncol = 2)

)

str(new_list)

List of 3
$ scalar: num 6
$ vector: chr [1:2] "Hello" "Goodbye"
$ matrix: int [1:2, 1:2] 1 2 3 4

Named list elements can be accessed by using $.

new_list$matrix

[,1] [,2]
[1,] 1 3
[2,] 2 4

Dataframes are the most used data structure in R; they are effectively a
named list of vectors of the same length, with each vector as a column. As
such, a dataframe is very similar in nature to a typical database table or
spreadsheet.

18 2 The Basics of the R Programming Language

two vectors of different types but same length
names <- c("John", "Ayesha")
ages <- c(31, 24)

create a dataframe
(df <- data.frame(names, ages))

names ages
1 John 31
2 Ayesha 24

get types of columns
str(df)

'data.frame': 2 obs. of 2 variables:
$ names: chr "John" "Ayesha"
$ ages : num 31 24

get dimensions of df
dim(df)

[1] 2 2

2.4 Working with dataframes

The dataframe is the most common data structure used by analysts in R, due
to its similarity to data tables found in databases and spreadsheets. We will
work almost entirely with dataframes in this book, so let’s get to know them.

2.4.1 Loading and tidying data in dataframes

To work with data in R, you usually need to pull it in from an outside source
into a dataframe2. R facilitates numerous ways of importing data from simple

2R also has some built-in data sets for testing and playing with. For example, check out
mtcars by typing it into the terminal, or type data() to see a full list of built-in data sets.

2.4 Working with dataframes 19

.csv files, from Excel files, from online sources or from databases. Let’s load a
data set that we will use later—the salespeople data set, which contains some
information on the sales, average customer ratings and performance ratings
of salespeople. The read.csv() function can accept a URL address of the file
if it is online.

url of data set
url <- "http://peopleanalytics-regression-book.org/data/salespeople.csv"

load the data set and store it as a dataframe called salespeople
salespeople <- read.csv(url)

We might not want to display this entire data set before knowing how big it
is. We can view the dimensions, and if it is too big to display, we can use the
head() function to display just the first few rows.

dim(salespeople)

[1] 351 4

hundreds of rows, so view first few
head(salespeople)

promoted sales customer_rate performance
1 0 594 3.94 2
2 0 446 4.06 3
3 1 674 3.83 4
4 0 525 3.62 2
5 1 657 4.40 3
6 1 918 4.54 2

We can view a specific column by using $, and we can use square brackets to
view a specific entry. For example if we wanted to see the 6th entry of the
sales column:

salespeople$sales[6]

[1] 918

20 2 The Basics of the R Programming Language

Alternatively, we can use a [row, column] index to get a specific entry in the
dataframe.

salespeople[34, 4]

[1] 3

We can take a look at the data types using str().

str(salespeople)

'data.frame': 351 obs. of 4 variables:
$ promoted : int 0 0 1 0 1 1 0 0 0 0 ...
$ sales : int 594 446 674 525 657 918 318 364 342 387 ...
$ customer_rate: num 3.94 4.06 3.83 3.62 4.4 4.54 3.09 4.89 3.74 3 ...
$ performance : int 2 3 4 2 3 2 3 1 3 3 ...

We can also see a statistical summary of each column using summary(), which
tells us various statistics depending on the type of the column.

summary(salespeople)

promoted sales customer_rate performance
Min. :0.0000 Min. :151.0 Min. :1.000 Min. :1.0
1st Qu.:0.0000 1st Qu.:389.2 1st Qu.:3.000 1st Qu.:2.0
Median :0.0000 Median :475.0 Median :3.620 Median :3.0
Mean :0.3219 Mean :527.0 Mean :3.608 Mean :2.5
3rd Qu.:1.0000 3rd Qu.:667.2 3rd Qu.:4.290 3rd Qu.:3.0
Max. :1.0000 Max. :945.0 Max. :5.000 Max. :4.0
NA's :1 NA's :1 NA's :1

Note that there is missing data in this dataframe, indicated by NAs in the
summary. Missing data is identified by a special NA value in R. This should
not be confused with "NA", which is simply a character string. The function
is.na() will look at all values in a vector or dataframe and return TRUE or
FALSE based on whether they are NA or not. By adding these up using the
sum() function, it will take TRUE as 1 and FALSE as 0, which effectively provides
a count of missing data.

2.4 Working with dataframes 21

sum(is.na(salespeople))

[1] 3

This is a small number of NAs given the dimensions of our data set and we
might want to remove the rows of data that contain NAs. The easiest way
is to use the complete.cases() function, which identifies the rows that have
no NAs, and then we can select those rows from the dataframe based on that
condition. Note that you can overwrite objects with the same name in R.

salespeople <- salespeople[complete.cases(salespeople),]

confirm no NAs
sum(is.na(salespeople))

[1] 0

We can see the unique values of a vector or column using the unique() function.

unique(salespeople$performance)

[1] 2 3 4 1

If we need to change the type of a column in a dataframe, we can use the
as.numeric(), as.character(), as.logical() or as.factor() functions. For
example, given that there are only four unique values for the performance
column, we may want to convert it to a factor.

salespeople$performance <- as.factor(salespeople$performance)
str(salespeople)

'data.frame': 350 obs. of 4 variables:
$ promoted : int 0 0 1 0 1 1 0 0 0 0 ...
$ sales : int 594 446 674 525 657 918 318 364 342 387 ...
$ customer_rate: num 3.94 4.06 3.83 3.62 4.4 4.54 3.09 4.89 3.74 3 ...
$ performance : Factor w/ 4 levels "1","2","3","4": 2 3 4 2 3 2 3 1 3 3 ...

22 2 The Basics of the R Programming Language

2.4.2 Manipulating dataframes

Dataframes can be subsetted to contain only rows that satisfy specific condi-
tions.

(sales_720 <- subset(salespeople, subset = sales == 720))

promoted sales customer_rate performance
290 1 720 3.76 3

Note the use of ==, which is used in many programming languages, to test for
precise equality. Similarly we can select columns based on inequalities (> for
‘greater than’ , < for ‘less than’ , >= for ‘greater than or equal to’ , <= for ‘less
than or equal to’ , or != for ‘not equal to’). For example:

high_sales <- subset(salespeople, subset = sales >= 700)
head(high_sales)

promoted sales customer_rate performance
6 1 918 4.54 2
12 1 716 3.16 3
20 1 937 5.00 2
21 1 702 3.53 4
25 1 819 4.45 2
26 1 736 3.94 4

To select specific columns use the select argument.

salespeople_sales_perf <- subset(salespeople,
select = c("sales", "performance"))

head(salespeople_sales_perf)

sales performance
1 594 2
2 446 3
3 674 4
4 525 2
5 657 3
6 918 2

2.4 Working with dataframes 23

Two dataframes with the same column names can be combined by their rows.

low_sales <- subset(salespeople, subset = sales < 400)

bind the rows of low_sales and high_sales together
low_and_high_sales = rbind(low_sales, high_sales)
head(low_and_high_sales)

promoted sales customer_rate performance
7 0 318 3.09 3
8 0 364 4.89 1
9 0 342 3.74 3
10 0 387 3.00 3
15 0 344 3.02 2
16 0 372 3.87 3

Two dataframes with different column names can be combined by their
columns.

two dataframes with two columns each
sales_perf <- subset(salespeople,

select = c("sales", "performance"))
prom_custrate <- subset(salespeople,

select = c("promoted", "customer_rate"))

bind the columns to create a dataframe with four columns
full_df <- cbind(sales_perf, prom_custrate)
head(full_df)

sales performance promoted customer_rate
1 594 2 0 3.94
2 446 3 0 4.06
3 674 4 1 3.83
4 525 2 0 3.62
5 657 3 1 4.40
6 918 2 1 4.54

24 2 The Basics of the R Programming Language

2.5 Functions, packages and libraries

In the code so far we have used a variety of functions. For example head(),
subset(), rbind(). Functions are operations that take certain defined inputs
and return an output. Functions exist to perform common useful operations.

2.5.1 Using functions

Functions usually take one or more arguments. Often there are a large number
of arguments that a function can take, but many are optional and not required
to be specified by the user. For example, the function head(), which displays
the first rows of a dataframe3, has only one required argument x: the name
of the dataframe. A second argument is optional, n: the number of rows to
display. If n is not entered, it is assumed to have the default value n = 6.

When running a function, you can either specify the arguments by name or
you can enter them in order without their names. If you enter arguments
without naming them, R expects the arguments to be entered in exactly the
right order.

see the head of salespeople, with the default of six rows
head(salespeople)

promoted sales customer_rate performance
1 0 594 3.94 2
2 0 446 4.06 3
3 1 674 3.83 4
4 0 525 3.62 2
5 1 657 4.40 3
6 1 918 4.54 2

see fewer rows - arguments need to be in the right order if not named
head(salespeople, 3)

3It actually has a broader definition but is mostly used for showing the first rows of a
dataframe.

2.5 Functions, packages and libraries 25

promoted sales customer_rate performance
1 0 594 3.94 2
2 0 446 4.06 3
3 1 674 3.83 4

or if you don't know the right order,
name your arguments and you can put them in any order
head(n = 3, x = salespeople)

promoted sales customer_rate performance
1 0 594 3.94 2
2 0 446 4.06 3
3 1 674 3.83 4

2.5.2 Help with functions

Most functions in R have excellent help documentation. To get help on the
head() function, type help(head) or ?head. This will display the results in
the Help browser window in RStudio. Alternatively you can open the Help
browser window directly in RStudio and do a search there. An example of the
browser results for head() is in Figure 2.2.

FIGURE 2.2: Results of a search for the head() function in the RStudio
Help browser

26 2 The Basics of the R Programming Language

The help page normally shows the following:

• Description of the purpose of the function
• Usage examples, so you can quickly see how it is used
• Arguments list so you can see the names and order of arguments
• Details or notes on further considerations on use
• Expected value of the output (for example head() is expected to return a

similar object to its first input x)
• Examples to help orient you further (sometimes examples can be very ab-

stract in nature and not so helpful to users)

2.5.3 Writing your own functions

Functions are not limited to those that come packaged in R. Users can write
their own functions to perform tasks that are helpful to their objectives. Ex-
perienced programmers in most languages subscribe to a principle called DRY
(Don’t Repeat Yourself). Whenever a task needs to be done repeatedly, it is
poor practice to write the same code numerous times. It makes more sense to
write a function to do the task.

In this example, a simple function is written which generates a report on a
dataframe:

create df_report function
df_report <- function(df) {
paste("This dataframe contains", nrow(df), "rows and",

ncol(df), "columns. There are", sum(is.na(df)), "NA entries.")
}

We can test our function by using the built-in mtcars data set in R.

df_report(mtcars)

[1] "This dataframe contains 32 rows and 11 columns. There are 0 NA entries."

2.5.4 Installing packages

All the common functions that we have used so far exist in the base R instal-
lation. However, the beauty of open source languages like R is that users can
write their own functions or resources and release them to others via packages.

2.5 Functions, packages and libraries 27

A package is an additional module that can be installed easily; it makes re-
sources available which are not in the base R installation. In this book we will
be using functions from both base R and from popular and useful packages.
As an example, a popular package used for statistical modeling is the MASS
package, which is based on methods in a popular applied statistics book4.

Before an external package can be used, it must be installed into your
package library using install.packages(). So to install MASS, type in-
stall.packages("MASS") into the console. This will send R to the main internet
repository for R packages (known as CRAN). It will find the right version of
MASS for your operating system and download and install it into your package
library. If MASS needs other packages in order to work, it will also install these
packages.

If you want to install more than one package, put the names of the packages
inside a character vector—for example:

my_packages <- c("MASS", "DescTools", "dplyr")
install.packages(my_packages)

Once you have installed a package, you can see what functions are available
by calling for help on it, for example using help(package = MASS). One pack-
age you may wish to install now is the peopleanalyticsdata package, which
contains all the data sets used in this book. By installing and loading this
package, all the data sets used in this book will be loaded into your R ses-
sion and ready to work with. If you do this, you can ignore the read.csv()
commands later in the book, which download the data from the internet.

2.5.5 Using packages

Once you have installed a package into your package library, to use it in your
R session you need to load it using the library() function. For example, to
load MASS after installing it, use library(MASS). Often nothing will happen
when you use this command, but rest assured the package has been loaded
and you can start to use the functions inside it. Sometimes when you load
the package a series of messages will display, usually to make you aware of
certain things that you need to keep in mind when using the package. Note
that whenever you see the library() command in this book, it is assumed
that you have already installed the package in that command. If you have not,
the library() command will fail.

Once a package is loaded from your library, you can use any of the functions
inside it. For example, the stepAIC() function is not available before you

4Venables and Ripley (2002)

28 2 The Basics of the R Programming Language

load the MASS package but becomes available after it is loaded. In this sense,
functions ‘belong’ to packages.

Problems can occur when you load packages that contain functions with the
same name as functions that already exist in your R session. Often the mes-
sages you see when loading a package will alert you to this. When R is faced
with a situation where a function exists in multiple packages you have loaded,
R always defaults to the function in the most recently loaded package. This
may not always be what you intended.

One way to completely avoid this issue is to get in the habit of namespacing
your functions. To namespace, you simply use package::function(), so to
safely call stepAIC() from MASS, you use MASS::stepAIC(). Most of the time
in this book when a function is being called from a package outside base R, I
use namespacing to call that function. This should help avoid confusion about
which packages are being used for which functions.

2.5.6 The pipe operator

Even in the most elementary briefing about R, it is very difficult to ignore the
pipe operator. The pipe operator makes code more natural to read and write
and reduces the typical computing problem of many nested operations inside
parentheses. The pipe operator comes inside many R packages, particularly
magrittr and dplyr.

As an example, imagine we wanted to do the following two operations in one
command:

1. Subset salespeople to only the sales values of those with sales
less than 500

2. Take the mean of those values

In base R, one way to do this is:

mean(subset(salespeople$sales, subset = salespeople$sales < 500))

[1] 388.6684

This is nested and needs to be read from the inside out in order to align
with the instructions. The pipe operator %>% takes the command that comes
before it and places it inside the function that follows it (by default as the
first argument). This reduces complexity and allows you to follow the logic
more clearly.

2.6 Errors, warnings and messages 29

load magrittr library to get the pipe operator
library(magrittr)

use the pipe operator to lay out the steps more logically
subset(salespeople$sales, subset = salespeople$sales < 500) %>%
mean()

[1] 388.6684

This can be extended to perform arbitrarily many operations in one piped
command.

salespeople$sales %>% # start with all data
subset(subset = salespeople$sales < 500) %>% # get the subsetted data
mean() %>% # take the mean value
round() # round to the nearest integer

[1] 389

The pipe operator is unique to R and is very widely used because it helps to
make code more readable, it reduces complexity, and it helps orient around a
common ‘grammar’ for the manipulation of data. The pipe operator helps you
structure your code more clearly around nouns (objects), verbs (functions) and
adverbs (arguments of functions). One of the most developed sets of packages
in R that follows these principles is the tidyverse family of packages, which
I encourage you to explore.

2.6 Errors, warnings and messages

As I mentioned earlier in this chapter, getting familiar with R can be frustrat-
ing at the beginning if you have never programmed before. You can expect
to regularly see messages, warnings or errors in response to your commands.
I encourage you to regard these as your friend rather than your enemy. It is
very tempting to take the latter approach when you are starting out, but over
time I hope you will appreciate some wisdom from my words.

Errors are serious problems which usually result in the halting of your code
and a failure to return your requested output. They usually come with an

30 2 The Basics of the R Programming Language

indication of the source of the error, and these can sometimes be easy to
understand and sometimes frustratingly vague and abstract. For example, an
easy-to-understand error is:

subset(salespeople, subset = sales = 720)

Error: unexpected '=' in "subset(salespeople, subset = sales ="

This helps you see that you have used sales = 720 as a condition to subset
your data, when you should have used sales == 720 for precise equality.

A much more challenging error to understand is:

head[salespeople]

Error in head[salespeople] : object of type 'closure' is not subsettable

When first faced with an error that you can’t understand, try not to get
frustrated and proceed in the knowledge that it usually can be fixed easily
and quickly. Often the problem is much more obvious than you think, and if
not, there is still a 99% likelihood that others have made this error and you
can read about it online. The first step is to take a look at your code to see
if you can spot what you did wrong. In this case, you may see that you have
used square brackets [] instead of parentheses () when calling your head()
function. If you cannot see what is wrong, the next step is to ask a colleague
or do an internet search with the text of the error message you receive, or to
consult online forums like https://stackoverflow.com. The more experienced
you become, the easier it is to interpret error messages.

Warnings are less serious and usually alert you to something that you might
be overlooking and which could indicate a problem with the output. In many
cases you can ignore warnings, but sometimes they are an important reminder
to go back and edit your code. For example, you may run a model which
doesn’t converge, and while this does not stop R from returning results, it is
also very useful for you to know that it didn’t converge.

Messages are pieces of information that may or may not be useful to you at a
particular point in time. Sometimes you will receive messages when you load
a package from your library. Sometimes messages will keep you up to date on
the progress of a process that is taking a long time to execute.

https://stackoverflow.com

2.7 Plotting and graphing 31

2.7 Plotting and graphing

As you might expect in a well-developed programming language, there are nu-
merous ways to plot and graph information in R. If you are doing exploratory
data analysis on fairly simple data and you don’t need to worry about pretty
appearance or formatting, the built-in plot capabilities of base R are fine. If
you need a pretty appearance, more precision, color coding or even 3D graph-
ics or animation, there are also specialized plotting and graphing packages for
these purposes. In general when working interactively in RStudio, graphical
output will be rendered in the Plots pane, where you can copy it or save it as
an image.

2.7.1 Plotting in base R

The simplest plot function in base R is plot(). This performs basic X-Y plot-
ting. As an example, this code will generate a scatter plot of customer_rate
against sales in the salespeople data set, with the results displayed in Figure
2.3. Note the use of the arguments main, xlab and ylab for customizing the
axis labels and title for the plot.

scatter plot of customer_rate against sales
plot(x = salespeople$sales, y = salespeople$customer_rate,

xlab = "Sales ($m)", ylab = "Average customer rating",
main = "Scatterplot of Sales vs Customer Rating")

Histograms of data can be generated using the hist() function. This command
will generate a histogram of performance as displayed in Figure 2.4. Note the
use of breaks to customize how the bars appear.

convert performance ratings back to numeric data type for histogram
salespeople$performance <- as.numeric(salespeople$performance)

histogram of performance ratings
hist(salespeople$performance, breaks = 0:4,

xlab = "Performance Rating",
main = "Histogram of Performance Ratings")

Box and whisker plots are excellent ways to see the distribution of a variable,
and can be grouped against another variable to see bivariate patterns. For

32 2 The Basics of the R Programming Language

200 400 600 800

1
2

3
4

5
Scatterplot of Sales vs Customer Rating

Sales ($m)

Av
er

ag
e

cu
st

om
er

 ra
tin

g

FIGURE 2.3: Simple scatterplot of customer_rate against sales in the
salespeople data set

Histogram of Performance Ratings

Performance Rating

Fr
eq

ue
nc

y

0 1 2 3 4

0
20

40
60

80
10

0

FIGURE 2.4: Simple histogram of performance in the salespeople data set

2.7 Plotting and graphing 33

example, this command will show a box and whisker plot of sales grouped
against performance, with the output shown in Figure 2.5. Note the use of the
formula and data notation here to define the variable we are interested in and
how we want it grouped. We will study this formula notation in greater depth
later in this book.

box plot of sales by performance rating
boxplot(formula = sales ~ performance, data = salespeople,

xlab = "Performance Rating", ylab = "Sales ($m)",
main = "Boxplot of Sales by Performance Rating")

1 2 3 4

20
0

40
0

60
0

80
0

Boxplot of Sales by Performance Rating

Performance Rating

Sa
le

s
($

m
)

FIGURE 2.5: Simple box plot of sales grouped against performance in the
salespeople data set

These are among the most common plots used for data exploration purposes.
They are examples of a wider range of plotting and graphing functions avail-
able in base R, such as line plots, bar plots and other varieties which you may
see later in this book.

2.7.2 Specialist plotting and graphing packages

By far the most commonly used specialist plotting and graphing package in
R is ggplot2. ggplot2 allows the flexible construction of a very wide range of

34 2 The Basics of the R Programming Language

charts and graphs, but uses a very specific command grammar which can take
some getting used to. However, once learned, ggplot2 can be an extremely
powerful tool. Many of the illustratory figures used in this book are developed
using ggplot2 and while the code for these figures is generally not included
for the sake of brevity, you can always find it in the source code of this book
on Github5. A great learning resource for ggplot2 is Wickham (2016).

The plotly package allows the use of the plotly graphing library in R. This is
an excellent package for interactive graphing and is used for 3D illustrations in
this book. Output can be rendered in HTML—allowing the user to play with
and explore the graphs interactively—or can be saved as static 2D images.

GGally is a package that extends ggplot2 to allow easy combination of charts
and graphs. This is particularly valuable for quicker exploratory data analysis.
One of its most popular functions is ggpairs(), which produces a pairplot.
A pairplot is a visualization of all univariate and bivariate patterns in a data
set, with univariate distributions in the diagonal and bivariate relationships or
correlations displayed in the off-diagonal. Figure 2.6 is an example of a pairplot
for the salespeople data set, which we will explore further in Chapter 5.

library(GGally)

convert performance and promotion to categorical
salespeople$promoted <- as.factor(salespeople$promoted)
salespeople$performance <- as.factor(salespeople$performance)

pairplot of salespeople
GGally::ggpairs(salespeople)

2.8 Documenting your work using R Markdown

For anyone performing any sort of multivariate analysis using a statistical
programming language, appropriate documentation and reproducibility of the
work is essential to its success and longevity. If your code is not easily obtained
or run by others, it is likely to have a very limited impact and lifetime. Learn-
ing how to create integrated documents that contain both text and code is
critical to providing access to your code and narration of your work.

5https://github.com/keithmcnulty/peopleanalytics-regression-book

https://github.com/

2.8 Documenting your work using R Markdown 35

Corr:

0.338***

promoted sales customer_rate performance
prom

oted
sales

custom
er_rate

perform
ance

0 1 250 500 750 1000 1 2 3 4 5 1 2 3 4

0
50

100
150
200

250

500

750

1000

1
2
3
4
5

020406080

020406080

020406080

020406080

FIGURE 2.6: Pairplot of the salespeople data set

R Markdown is a package which allows you to create integrated documents
containing both formatted text and executed code. It is, in my opinion, one
of the best resources available currently for this purpose. This entire book has
been created using R Markdown. You can start an R Markdown document
in RStudio by installing the rmarkdown package and then opening a new R
Markdown document file, which will have the suffix .Rmd.

R Markdown documents always start with a particular heading type called a
YAML header, which contains overall information on the document you are
creating. Care must be taken with the precise formatting of the YAML header,
as it is sensitive to spacing and indentation. Usually a basic YAML header is
created for you in RStudio when you start a new .Rmd file. Here is an example.

title: "My new document"
author: "Keith McNulty"
date: "25/01/2021"
output: html_document

The output part of this header has numerous options, but the most commonly
used are html_document, which generates your document as a web page, and
pdf_document, which generates your document as a PDF using the open source
LaTeX software package. If you wish to create PDF documents you will need

36 2 The Basics of the R Programming Language

to have a version of LaTeX installed on your system. One R package that can
do this for you easily is the tinytex package. The function install_tinytex()
from this package will install a minimal version of LaTeX which is fine for most
purposes.

R Markdown allows you to build a formatted document using many shorthand
formatting commands. Here are a few examples of how to format headings and
place web links or images in your document:

My top heading

This section is about this general topic.

My first sub heading

To see more information on this sub-topic visit [here](https://my.web.link).

My second sub heading

Here is a nice picture about this sub-topic.

Code can be written and executed and the results displayed inline using back-
ticks. For example, writing

`r nrow(salespeople)`

inline will display 351 in the final document. Entire code blocks can be included
and executed by using triple-backticks. The following code block:

```{r}
# show the first few rows of salespeople
head(salespeople)
```

will display this output:

promoted sales customer_rate performance
1 0 594 3.94 2
2 0 446 4.06 3
3 1 674 3.83 4
4 0 525 3.62 2
5 1 657 4.40 3
6 1 918 4.54 2

2.9 Learning exercises 37

The {} wrapping allows you to specify different languages for your code chunk.
For example, if you wanted to run Python code instead of R code you can use
{python}. It also allows you to set options for the code chunk display separated
by commas. For example, if you want the results of your code to be displayed,
but without the code itself being displayed, you can use {r, echo = FALSE}.

The process of compiling your R Markdown code to produce a document is
known as ‘knitting.’ To create a knitted document, you simply need to click
on the ‘Knit’ button in RStudio that appears above your R Markdown code.

If you are not familiar with R Markdown, I strongly encourage you to learn it
alongside R and to challenge yourself to write up any practice exercises you
take on in this book using R Markdown. Useful cheat sheets and reference
guides for R Markdown formatting and commands are available through the
Cheatsheets section of the Help menu in RStudio. I also recommend Xie,
Dervieux, and Riederer (2020) for a really thorough instruction and reference
guide.

2.9 Learning exercises

2.9.1 Discussion questions

1. Describe the following data types: numeric, character, logical, fac-
tor.

2. Why is a vector known as a homogeneous data structure?
3. Give an example of a heterogeneous data structure in R.
4. What is the difference between NA and "NA"?
5. What operator is used to return named elements of a list and named

columns of a dataframe?
6. Describe some functions that are used to manipulate dataframes.
7. What is a package and how do you install and use a new package?
8. Describe what is meant by ‘namespacing’ and why it might be use-

ful.
9. What is the pipe operator, and why is it popular in R?

10. What is the difference between an error and a warning in R?
11. Name some simple plotting functions in base R.
12. Name some common specialist plotting and graphing packages in

R.
13. What is R Markdown, and why is it useful to someone performing

analysis using programming languages?

38 2 The Basics of the R Programming Language

2.9.2 Data exercises

1. Create a character vector called my_names that contains all your
first, middle and last names as elements. Calculate the length of
my_names.

2. Create a second numeric vector called which which corresponds to
my_names. The entries should be the position of each name in the or-
der of your full name. Verify that it has the same length as my_names.

3. Create a dataframe called names, which consists of the two vectors
my_names and which as columns. Calculate the dimensions of names.

4. Create a new dataframe new_names with the which column converted
to character type. Verify that your command worked using str().

5. Load the ugtests data set via the peopleanalyticsdata package or
download it from the internet6. Calculate the dimensions of ugtests
and view the first three rows only.

6. View a statistical summary of all of the columns of ugtests. Deter-
mine if there are any missing values.

7. View the subset of ugtests for values of Yr1 greater than 50.
8. Install and load the package dplyr. Look up the help for the fil-

ter() function in this package and try to use it to repeat the task
in the previous question.

9. Write code to find the mean of the Yr1 test scores for all those who
achieved Yr3 test scores greater than 100. Round this mean to the
nearest integer.

10. Familiarize yourself with the two functions filter() and pull()
from dplyr. Use these functions to try to do the same calculation in
the previous question using a single unbroken piped command. Be
sure to namespace where necessary.

11. Create a scatter plot using the ugtests data with Final scores on
the 𝑦 axis and Yr3 scores on the 𝑥 axis.

12. Create your own 5-level grading logic and use it to create a new
finalgrade column in the ugtests data set with grades 1–5 of in-
creasing attainment based on the Final score in ugtests. Generate
a histogram of this finalgrade column.

13. Using your new ugtests data with the extra column from the previ-
ous exercise, create a box plot of Yr3 scores grouped by finalgrade.

14. Knit all of your answers to these exercises into an R Markdown
document. Create one version that displays your code and answers,
and another that just displays the answers.

6http://peopleanalytics-regression-book.org/data/ugtests.csv

http://peopleanalytics-regression-book.org/

3
Statistics Foundations

To properly understand multivariate models, an analyst needs to have a de-
cent grasp of foundational statistics. Many of the assumptions and results of
multivariate models require an understanding of these foundations in order to
be properly interpreted. There are three topics that are particularly important
for those proceeding further in this book:

1. Descriptive statistics of populations and samples
2. Distribution of random variables
3. Hypothesis testing

If you have never really studied these topics, I would strongly recommend
taking a course in them and spending good time getting to know them. Again,
just as the last chapter was not intended to be a comprehensive tutorial on R,
neither is this chapter intended to be a comprehensive tutorial on introductory
statistics. However, we will introduce some key concepts here that are critical
to understanding later chapters, and as always we will illustrate using real
data examples.

In preparation for this chapter we are going to download a data set that we
will work through in a later chapter, and use it for practical examples and
illustration purposes. The data are a set of information on the sales, customer
ratings and performance ratings on a set of 351 salespeople as well as an
indication of whether or not they were promoted.

if needed, use online url to download salespeople data
url <- "http://peopleanalytics-regression-book.org/data/salespeople.csv"
salespeople <- read.csv(url)

Let’s take a brief look at the first few rows of this data to make sure we know
what is inside it.

head(salespeople)

DOI: 10.1201/9781003194156-3 39

https://doi.org/10.1201/9781003194156-3

40 3 Statistics Foundations

promoted sales customer_rate performance
1 0 594 3.94 2
2 0 446 4.06 3
3 1 674 3.83 4
4 0 525 3.62 2
5 1 657 4.40 3
6 1 918 4.54 2

And let’s understand the structure of this data.

str(salespeople)

'data.frame': 351 obs. of 4 variables:
$ promoted : int 0 0 1 0 1 1 0 0 0 0 ...
$ sales : int 594 446 674 525 657 918 318 364 342 387 ...
$ customer_rate: num 3.94 4.06 3.83 3.62 4.4 4.54 3.09 4.89 3.74 3 ...
$ performance : int 2 3 4 2 3 2 3 1 3 3 ...

It looks like:

• promoted is a binary value, either 1 or 0, indicating ‘promoted’ or ‘not pro-
moted,’ respectively.

• sales and customer_rate look like normal numerical values.
• performance looks like a set of performance categories—there appear to be

four based on what we can see.

3.1 Elementary descriptive statistics of populations and
samples

Any collection of numerical data on one or more variables can be described
using a number of common statistical concepts. Let 𝑥 = 𝑥1, 𝑥2, … , 𝑥𝑛 be a
sample of 𝑛 observations of a variable drawn from a population.

3.1.1 Mean, variance and standard deviation

The mean is the average value of the observations and is defined by adding
up all the values and dividing by the number of observations. The mean ̄𝑥 of
our sample 𝑥 is defined as:

3.1 Elementary descriptive statistics of populations and samples 41

̄𝑥 = 1
𝑛

𝑛
∑
𝑖=1

𝑥𝑖

While the mean of a sample 𝑥 is denoted by ̄𝑥, the mean of an entire popu-
lation is usually denoted by 𝜇. The mean can have a different interpretation
depending on the type of data being studied. Let’s look at the mean of three
different columns of our salespeople data, making sure to ignore any missing
data.

mean(salespeople$sales, na.rm = TRUE)

[1] 527.0057

This looks very intuitive and appears to be the average amount of sales made
by the individuals in the data set.

mean(salespeople$promoted, na.rm = TRUE)

[1] 0.3219373

Given that this data can only have the value of 0 or 1, we interpret this mean
as likelihood or expectation that an individual will be labeled as 1. That is,
the average probability of promotion in the data set. If this data showed a
perfectly random likelihood of promotion, we would expect this to take the
value of 0.5. But it is lower than 0.5, which tells us that the majority of
individuals are not promoted.

mean(salespeople$performance, na.rm = TRUE)

[1] 2.5

Given that this data can only have the values 1, 2, 3 or 4, we interpret this as
the expected value of the performance rating in the data set. Higher or lower
means inform us about the distribution of the performance ratings. A low
mean will indicate a skew towards a low rating, and a high mean will indicate
a skew towards a high rating.

Other common statistical summary measures include the median, which is the

42 3 Statistics Foundations

middle value when the values are ranked in order, and the mode, which is the
most frequently occurring value.

The variance is a measure of how much the data varies around its mean.
There are two different definitions of variance. The population variance
assumes that that we are working with the entire population and is defined
as the average squared difference from the mean:

Var𝑝(𝑥) = 1
𝑛

𝑛
∑
𝑖=1

(𝑥𝑖 − ̄𝑥)2

The sample variance assumes that we are working with a sample and at-
tempts to estimate the variance of a larger population by applying Bessel’s
correction to account for potential sampling error. The sample variance is:

Var𝑠(𝑥) = 1
𝑛 − 1

𝑛
∑
𝑖=1

(𝑥𝑖 − ̄𝑥)2

You can see that

Var𝑝(𝑥) = 𝑛 − 1
𝑛 Var𝑠(𝑥)

So as the data set gets larger, the sample variance and the population variance
become less and less distinguishable, which intuitively makes sense.

Because we rarely work with full populations, the sample variance is calculated
by default in R and in many other statistical software packages.

sample variance
(sample_variance_sales <- var(salespeople$sales, na.rm = TRUE))

[1] 34308.11

So where necessary, we need to apply a transformation to get the population
variance.

population variance (need length of non-NA data)
n <- length(na.omit(salespeople$sales))
(population_variance_sales <- ((n-1)/n) * sample_variance_sales)

[1] 34210.09

3.1 Elementary descriptive statistics of populations and samples 43

Variance does not have intuitive scale relative to the data being studied, be-
cause we have used a ‘squared distance metric’ , therefore we can square-root
it to get a measure of ‘deviance’ on the same scale as the data. We call this the
standard deviation 𝜎(𝑥), where Var(𝑥) = 𝜎(𝑥)2. As with variance, standard
deviation has both population and sample versions, and the sample version is
calculated by default. Conversion between the two takes the form

𝜎𝑝(𝑥) = √𝑛 − 1
𝑛 𝜎𝑠(𝑥)

sample standard deviation
(sample_sd_sales <- sd(salespeople$sales, na.rm = TRUE))

[1] 185.2245

verify that sample sd is sqrt(sample var)
sample_sd_sales == sqrt(sample_variance_sales)

[1] TRUE

calculate population standard deviation
(population_sd_sales <- sqrt((n-1)/n) * sample_sd_sales)

[1] 184.9597

Given the range of sales is [151, 945] and the mean is 527, we see that the
standard deviation gives a more intuitive sense of the ‘spread’ of the data
relative to its inherent scale.

3.1.2 Covariance and correlation

The covariance between two variables is a measure of the extent to which
one changes as the other changes. If 𝑦 = 𝑦1, 𝑦2, … , 𝑦𝑛 is a second variable, and

̄𝑥 and ̄𝑦 are the means of 𝑥 and 𝑦, respectively, then the sample covariance
of 𝑥 and 𝑦 is defined as

44 3 Statistics Foundations

cov𝑠(𝑥, 𝑦) = 1
𝑛 − 1

𝑛
∑
𝑖=1

(𝑥𝑖 − ̄𝑥)(𝑦𝑖 − ̄𝑦)

and as with variance, the population covariance is

cov𝑝(𝑥, 𝑦) = 𝑛 − 1
𝑛 cov𝑠(𝑥, 𝑦)

Again, the sample covariance is the default in R, and we need to transform to
obtain the population covariance.

get sample covariance for sales and customer_rate,
ignoring observations with missing data
(sample_cov <- cov(salespeople$sales, salespeople$customer_rate,

use = "complete.obs"))

[1] 55.81769

convert to population covariance (need number of complete obs)
cols <- subset(salespeople, select = c("sales", "customer_rate"))
n <- nrow(cols[complete.cases(cols),])
(population_cov <- ((n-1)/n) * sample_cov)

[1] 55.65821

As can be seen, the difference in covariance is very small between the sample
and population versions, and both confirm a positive relationship between
sales and customer rating. However, we again see this issue that there is no
intuitive sense of scale for this measure.

Pearson’s correlation coefficient divides the covariance by the product of
the standard deviations of the two variables:

𝑟𝑥,𝑦 = cov(𝑥, 𝑦)
𝜎(𝑥)𝜎(𝑦)

This creates a scale of −1 to 1 for 𝑟𝑥,𝑦, which is an intuitive way of under-
standing both the direction and strength of the relationship between 𝑥 and
𝑦, with −1 indicating that 𝑥 increases perfectly as 𝑦 decreases, 1 indicating
that 𝑥 increases perfectly as 𝑦 increases, and 0 indicating that there is no
relationship between the two.

3.1 Elementary descriptive statistics of populations and samples 45

As before, there is a sample and population version of the correlation coeffi-
cient, and R calculates the sample version by default. Similar transformations
can be used to determine a population correlation coefficient and over large
samples the two measures converge.

calculate sample correlation between sales and customer_rate
cor(salespeople$sales, salespeople$customer_rate, use = "complete.obs")

[1] 0.337805

This tells us that there is a moderate positive correlation between sales and
customer rating.

You will notice that we have so far used two variables on a continuous scale
to demonstrate covariance and correlation. Pearson’s correlation can also be
used between a continuous scale and a dichotomous (binary) scale variable,
and this is known as a point-biserial correlation.

cor(salespeople$sales, salespeople$promoted, use = "complete.obs")

[1] 0.8511283

Correlating ranked variables involves an adjusted approach leading to Spear-
man’s rho (𝜌) or Kendall’s tau (𝜏), among others. We will not dive into
the mathematics of this here, but a good source is Bhattacharya and Burman
(2016). Spearman’s or Kendall’s variant should be used whenever at least one
of the variables is a ranked variable, and both variants are available in R.

spearman's rho correlation
cor(salespeople$sales, salespeople$performance,

method = "spearman", use = "complete.obs")

[1] 0.2735446

kendall's tau correlation
cor(salespeople$sales, salespeople$performance,

method = "kendall", use = "complete.obs")

46 3 Statistics Foundations

[1] 0.2073609

In this case, both indicate a low to moderate correlation. Spearman’s rho
or Kendall’s tau can also be used to correlate a ranked and a dichotomous
variable, and this is known as a rank-biserial correlation.

3.2 Distribution of random variables

As we outlined in Section 1.2, when we build a model we are using a set of
sample data to infer a general relationship on a larger population. A major
underlying assumption in our inference is that we believe the real-life variables
we are dealing with are random in nature. For example, we might be trying
to model the drivers of the voting choice of millions of people in a national
election, but we may only have sample data on a few thousand people. When
we infer nationwide voting intentions from our sample, we assume that the
characteristics of the voting population are random variables.

3.2.1 Sampling of random variables

When we describe variables as random, we are assuming that they take a form
which is independent and identically distributed. Using our salespeople data
as an example, we are assuming that the sales of one person in the data set
is not influenced by the sales of another person in the data set. In this case,
this seems like a reasonable assumption, and we will be making it for many
(though not all) of the statistical methods used in this book. However, it is
good to recognize that there are scenarios where this assumption cannot be
made. For example, if the salespeople worked together in serving the same
customers on the same products, and each individual’s sales represented some
proportion of the overall sales to the customer, we cannot say that the sales
data is independent and identically distributed. In this case, we will expect
to see some hierarchy in our data and will need to adjust our techniques
accordingly to take this into consideration.

Under the central limit theorem, if we take samples from a random variable
and calculate a summary statistic for each sample, that statistic is itself a
random variable, and its mean converges to the true population statistic with
more and more sampling. Let’s test this with a little experiment on our sales-
people data. Figure 3.1 shows the results of taking 10, 100 and 1000 different
random samples of 50, 100 and 150 salespeople from the salespeople data
set and creating a histogram of the resulting mean sales values. We can see

3.2 Distribution of random variables 47

how greater numbers of samples (down the rows) lead to a more normal dis-
tribution curve and larger sample sizes (across the columns) lead to a ‘spikier’
distribution with a smaller standard deviation.

FIGURE 3.1: Histogram and density of mean sales from the salespeople
data set based on sample sizes of 50, 100 and 150 (columns) and 10, 100 and
1000 samplings (rows)

3.2.2 Standard errors, the 𝑡-distribution and confidence inter-
vals

One consequence of the observations in Figure 3.1 is that the summary statis-
tics calculated from larger sample sizes fall into distributions that are ‘nar-
rower’ and hence represent more precise estimations of the population statistic.
The standard deviation of a sampled statistic is called the standard error
of that statistic. In the special case of a sampled mean, the formula for the
standard error of the mean can be derived to be

𝑆𝐸 = 𝜎√𝑛
where 𝜎 is the (sample) standard deviation and 𝑛 is the sample size1. This
confirms that the standard error of the mean decreases with greater sample

1Note that this formula assumes that the sample standard deviation is a close approx-
imation of the population standard deviation, which is generally fine for samples that are
not very small.

48 3 Statistics Foundations

size, confirming our intuition that the estimation of the mean is more precise
with larger samples.

To apply this logic to our salespeople data set, let’s take a random sample of
100 values of customer_rate.

set seed for reproducibility of sampling
set.seed(123)

generate a sample of 100 observations
custrate <- na.omit(salespeople$customer_rate)
n <- 100
sample_custrate <- sample(custrate, n)

We can calculate the mean of the sample and the standard error of the mean.

mean
(sample_mean <- mean(sample_custrate))

[1] 3.6485

standard error
(se <- sd(sample_custrate)/sqrt(n))

[1] 0.08494328

Because the normal distribution is a frequency (or probability) distribution, we
can interpret the standard error as a fundamental unit of ‘sensitivity’ around
the sample mean. For greater multiples of standard errors around the sample
mean, we can have greater certainty that the range contains the true popula-
tion mean.

To calculate how many standard errors we would need around the sample mean
to have a 95% probability of including the true population mean, we need to
use the 𝑡-distribution. The 𝑡-distribution is essentially an approximation of
the normal distribution acknowledging that we only have a sample estimate
of the true population standard deviation in how we calculate the standard
error. In this case where we are dealing with a single sample mean, we use the
𝑡-distribution with 𝑛 − 1 degrees of freedom. We can use the qt() function in
R to find the standard error multiple associated with the level of certainty we

3.3 Hypothesis testing 49

need. In this case, we are looking for our true population mean to be outside
the top 2.5% or bottom 2.5% of the distribution2.

get se multiple for 0.975
(t <- qt(p = 0.975, df = n - 1))

[1] 1.984217

We see that approximately 1.98 standard errors on either side of our sample
mean will give us 95% confidence that our range contains the true population
mean. This is called the 95% confidence interval3.

95% confidence interval lower and upper bounds
lower_bound <- sample_mean - t*se
upper_bound <- sample_mean + t*se

cat(paste0('[', lower_bound, ', ', upper_bound, ']'))

[3.47995410046738, 3.81704589953262]

3.3 Hypothesis testing

Observations about the distribution of statistics on samples of random vari-
ables allow us to construct tests for hypotheses of difference or similarity. Such
hypothesis testing is useful in itself for simple bivariate analysis in practice
settings, but it will be particularly critical in later chapters in determining
whether models are useful or not. Before we go through some technical ex-
amples of hypothesis testing, let’s overview the logic and intuition for how
hypothesis testing works.

2As sample sizes increase and sample statistics get very close to population statistics,
whether we use a 𝑡-distribution or a 𝑧-distribution (normal distribution) for determining
confidence intervals or p-values becomes less important as they become almost identical
on large samples. The output of some later models will refer to 𝑡-statistics and others to
𝑧-statistics, but the difference is only likely to matter in small samples of less than 50 or
so observations. In this chapter we will use the 𝑡-distribution as it is a better choice for all
sample sizes.

3Often we can use a rough estimate for larger samples that the 95% confidence interval
is 2 standard errors either side of the sample mean.

50 3 Statistics Foundations

The purpose of hypothesis testing is to establish a high degree of statistical
certainty regarding a claim of difference in a population based on the proper-
ties of a sample. Consistent with a high burden of proof, we start from the
hypothesis that there is no difference, called the null hypothesis. We only re-
ject the null hypothesis if the statistical properties of the sample data render
it very unlikely, in which case we confirm the alternative hypothesis that a
statistical difference does exist in the population.

Most hypothesis tests can return a p-value, which is the maximum probability
of finding the sample results (or results that are more extreme or unusual than
the sample results) when the null hypothesis is true for the population. The
analyst must decide on the level of p-value needed to reject the null hypothesis.
This threshold is referred to as the significance level 𝛼 (alpha). A common
standard is to set 𝛼 at 0.05. That is, we reject the null hypothesis if the p-
value that we find for our sample results is less than 0.05. If we reject the null
hypothesis at 𝛼 = 0.05, this means that the results we observe in the sample
are so extreme or unusual that they would only occur by chance at most 1
in 20 times if the null hypothesis were true. An alpha of 0.05 is not the only
standard of certainty used in research and practice, and in some fields of study
smaller alphas are the norm, particularly if erroneous conclusions might have
very serious consequences.

Three of the most common types of hypothesis tests are4:

1. Testing for a difference in the means of two groups
2. Testing for a non-zero correlation between two variables
3. Testing for a difference in frequency distributions between different

categories

We will go through an example of each of these. In each case, you will see a
three-step process. First, we calculate a test statistic. Second, we determine an
expected distribution for that test statistic. Finally, we determine where our
calculated statistic falls in that distribution in order to assess the likelihood
of our sample occurring if the null hypothesis is true. During these examples,
we will go through all the logic and calculation steps needed to do the hypoth-
esis testing, before we demonstrate the simple functions that perform all the
steps for you in R. Readers don’t absolutely need to know all the details con-
tained in this section, but a strong understanding of the underlying methods
is encouraged.

4We go through these three examples both because they are relatively common and to
illustrate the details of the logic behind hypothesis testing. By understanding how hypothesis
tests work, this will allow the reader to grasp the meaning of other such tests like the F-test
or the Wald test, which we will refer to in later chapters of this book

3.3 Hypothesis testing 51

3.3.1 Testing for a difference in means (Welch’s 𝑡-test)

Imagine that we are asked if, in general, the sales of low-performing salespeople
are different from the sales of high-performing salespeople. This question refers
to all salespeople, but we only have data for the sample in our salespeople
data set. Let’s take two subsets of our data for those with a performance rating
of 1 and those with a performance rating of 4, and calculate the difference in
mean sales.

take two performance group samples
perf1 <- subset(salespeople, subset = performance == 1)
perf4 <- subset(salespeople, subset = performance == 4)

calculate the difference in mean sales
(diff <- mean(perf4$sales) - mean(perf1$sales))

[1] 154.9742

We can see that those with a higher performance rating in our sample did
generate higher mean sales than those with a lower performance rating. But
these are just samples, and we are being asked to give a conclusion about
the populations they are drawn from. Let’s take a null hypothesis that there
is no difference in true mean sales between the two performance groups that
these samples are drawn from. We combine the two samples and calculate the
distribution around the difference in means. To reject the null hypothesis at
𝛼 = 0.05, we would need to determine that the 95% confidence interval of this
distribution does not contain zero.

We calculate the standard error of the combined sample using the formula5:

√𝜎2
perf1

𝑛perf1
+

𝜎2
perf4

𝑛perf4

where 𝜎perf1 and 𝜎perf4 are the standard deviations of the two samples and
𝑛perf1 and 𝑛perf4 are the two sample sizes.

We use a special formula called the Welch-Satterthwaite approximation6 to
calculate the degrees of freedom for the two samples, which in this case calcu-
lates to 100.987. This allows us to construct a 95% confidence interval for the
difference between the means, and we can test whether this contains zero.

5If you are inquisitive about this formula, see the exercises at the end of this chapter.
6https://en.wikipedia.org/wiki/Welch–Satterthwaite_equation
7I’ve kept the gory details of how this is derived out of view, but you can see them if you

view the source code for this book.

https://en.wikipedia.org/

52 3 Statistics Foundations

calculate standard error of the two sets
se <- sqrt(sd(perf1$sales)^2/length(perf1$sales)

+ sd(perf4$sales)^2/length(perf4$sales))

calculate the required t-statistic
t <- qt(p = 0.975, df = 100.98)

calculate 95% confidence interval
(lower_bound <- diff - t*se)

[1] 88.56763

(upper_bound <- diff + t*se)

[1] 221.3809

test if zero is inside this interval
(0 <= upper_bound) & (0 >= lower_bound)

[1] FALSE

Since this has returned FALSE, we conclude that a mean difference of zero is
outside the 95% confidence interval of our sample mean difference, and so we
cannot have 95% certainty that the difference in population means is zero. We
reject the null hypothesis that the mean sales of both performance levels are
the same.

Looking at this graphically, we are assuming a 𝑡-distribution of the mean
difference, and we are determining where zero sits in that distribution, as in
Figure 3.2.

The red dashed lines in this diagram represent the 95% confidence interval
around the mean difference of our two samples. The ‘tails’ of the curve outside
of these two lines each represent a maximum of 0.025 probability for the true
population mean. So we can see that the position of the blue dot-dashed line
can correspond to a maximum probability that the population mean difference
is zero. This is the p-value of the hypothesis test8.

8We call this type of hypothesis test a two-tailed test, because the tested population
mean can be either higher or lower than the sample mean, thus it can appear in any of
the two tails for the null hypothesis to be rejected. One-tailed tests are used when you are
testing for an alternative hypothesis that the difference is specifically ‘less than zero’ or
‘greater than zero’ . In the t.test() function in R, you can specify this in the arguments.

3.3 Hypothesis testing 53

0.0

0.1

0.2

0.3

0.4

-5.0 -2.5 0.0 2.5 5.0
Standard errors around sample mean difference

FIGURE 3.2: t-distribution of the mean sales difference between perf1 and
perf4, 95% confidence intervals (red dashed lines) and a zero difference (blue
dot-dash line)

The p-value can be derived by calculating the standard error multiple as-
sociated with zero in the 𝑡-distribution (called the 𝑡-statistic or 𝑡-value), by
applying the conversion function pt() to obtain the upper tail probability and
then multiplying by 2 to get the probability associated with both tails of the
distribution.

get t-statistic
t_actual <- diff/se

convert t-statistic to p-value
2*pt(t_actual, df = 100.98, lower = FALSE)

[1] 1.093212e-05

Nowadays, it is never necessary to do these manual calculations ourselves
because hypothesis tests are a standard part of statistical software. In R, the
t.test() function performs a hypothesis test of difference in means of two
samples and confirms our manually calculated p-value and 95% confidence
interval.

54 3 Statistics Foundations

t.test(perf4$sales, perf1$sales)

##
Welch Two Sample t-test
##
data: perf4$sales and perf1$sales
t = 4.6295, df = 100.98, p-value = 1.093e-05
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
88.5676 221.3809
sample estimates:
mean of x mean of y
619.8909 464.9167

Because our p-value is less than our alpha of 0.05, we reject the null hypothesis
in favor of the alternative hypothesis. The standard 𝛼 = 0.05 is associated with
the term statistically significant. Therefore we could say here that the two
performance groups have a statistically significant difference in mean sales.

In practice, there are numerous alphas that are of interest to analysts, each
reflecting different levels of certainty. While 0.05 is the most common stan-
dard in many disciplines, more stringent alphas of 0.01 and 0.001 are often
used in situations where a high degree of certainty is desirable (for example,
some medical fields). Similarly, a less stringent alpha standard of 0.1 can be
of interest particularly when sample sizes are small and the analyst is satis-
fied with ‘indications’ from the data. In many statistical software packages,
including those that we will see in this book, tests that meet an 𝛼 = 0.1
standard are usually marked with period(.), those that meet 𝛼 = 0.05 with
an asterisk(*), 𝛼 = 0.01 a double asterisk(**) and 𝛼 = 0.001 a triple aster-
isk(***). Many leading statisticians have argued that p-values are more a test
of sample size than anything else and have cautioned against too much of a
focus on p-values in making statistical conclusions from data. In particular,
situations where data and methodology have been deliberately manipulated to
achieve certain alpha standards—a process known as ‘p-hacking’—has been of
increasing concern recently. See Chapter 11 for a better understanding of how
the significance level and the sample size contribute to determining statistical
power in hypothesis testing.

3.3.2 Testing for a non-zero correlation between two variables
(𝑡-test for correlation)

Imagine that we are given a sample of data for two variables and we are asked
if the variables are correlated in the overall population. We can take a null

3.3 Hypothesis testing 55

hypothesis that the variables are not correlated, determine a t-statistic asso-
ciated with a zero correlation and convert this to a p-value. The t-statistic
associated with a correlation 𝑟 between two samples of length 𝑛 is often no-
tated 𝑡∗ and is defined as

𝑡∗ = 𝑟
√

𝑛 − 2√
1 − 𝑟2

𝑡∗ can be converted to an associated p-value using a 𝑡-distribution in a similar
way to the previous section, this time with 𝑛 − 2 degrees of freedom in our
𝑡-distribution. As an example, let’s calculate 𝑡∗ for the correlation between
sales and customer rating in our sample and convert it to a p-value.

remove NAs from salespeople
salespeople <- salespeople[complete.cases(salespeople),]

calculate t_star
r <- cor(salespeople$sales, salespeople$customer_rate)
n <- nrow(salespeople)
t_star <- (r*sqrt(n - 2))/sqrt(1 - r^2)

convert to p-value on t-distribution with n - 2 degrees of freedom
2*pt(t_star, df = n - 2, lower = FALSE)

[1] 8.647952e-11

Again, there is a useful function in R to cut out the need for all our manual
calculations. The cor.test() function in R performs a hypothesis test on the
null hypothesis that two variables have zero correlation.

cor.test(salespeople$sales, salespeople$customer_rate)

##
Pearson's product-moment correlation
##
data: salespeople$sales and salespeople$customer_rate
t = 6.6952, df = 348, p-value = 8.648e-11
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.2415282 0.4274964
sample estimates:
cor
0.337805

56 3 Statistics Foundations

This confirms our manual calculations, and we see the null hypothesis has been
rejected and we can conclude that there is a significant correlation between
sales and customer rating.

3.3.3 Testing for a difference in frequency distribution be-
tween different categories in a data set (Chi-square test)

Imagine that we are asked if the performance category of each person in the
salespeople data set has a relationship with their promotion likelihood. We
will test the null hypothesis that there is no difference in the distribution of
promoted versus not promoted across the four performance categories.

First we can produce a contingency table, which is a matrix containing counts
of how many people were promoted or not promoted in each category.

create contingency table of promoted vs performance
(contingency <- table(salespeople$promoted, salespeople$performance))

##
1 2 3 4
0 50 85 77 25
1 10 25 48 30

We can see by summing each row that for the total sample we can expect
113 people to be promoted and 237 to miss out on promotion. We can use
this ratio to compute an expected proportion in each performance category
under the assumption that the distribution was exactly the same across all
four categories.

calculate expected promoted and not promoted
(expected_promoted <- (sum(contingency[2,])/sum(contingency)) *

colSums(contingency))

1 2 3 4
19.37143 35.51429 40.35714 17.75714

(expected_notpromoted <- (sum(contingency[1,])/sum(contingency)) *
colSums(contingency))

3.3 Hypothesis testing 57

1 2 3 4
40.62857 74.48571 84.64286 37.24286

Now we can compare our observed versus expected values using the difference
metric:

(observed − expected)2

expected
and add these all up to get a total, known as the 𝜒2 statistic.

calculate the difference metrics for promoted and not promoted
promoted <- sum((expected_promoted - contingency[2,])^2/

expected_promoted)

notpromoted <- sum((expected_notpromoted - contingency[1,])^2/
expected_notpromoted)

calculate chi-squared statistic
(chi_sq_stat <- notpromoted + promoted)

[1] 25.89541

The 𝜒2 statistic has an expected distribution that can be used to determine
the p-value associated with this statistic. As with the 𝑡-distribution, the 𝜒2-
distribution depends on the degrees of freedom. This is calculated by sub-
tracting one from the number of rows and from the number of columns in the
contingency table and multiplying them together. In this case we have 2 rows
and 4 columns, which calculates to 3 degrees of freedom. Armed with our 𝜒2

statistic and our degrees of freedom, we can now calculate the p-value for the
hypothesis test using the pchisq() function.

calculate p-value from chi_squared stat
pchisq(chi_sq_stat, df = 3, lower.tail=FALSE)

[1] 1.003063e-05

The chisq.test() function in R performs all the steps involved in a chi-square
test of independence on a contingency table and returns the 𝜒2 statistic and
associated p-value for the null hypothesis, in this case confirming our manual
calculations.

58 3 Statistics Foundations

chisq.test(contingency)

##
Pearson's Chi-squared test
##
data: contingency
X-squared = 25.895, df = 3, p-value = 1.003e-05

Again, we can reject the null hypothesis and confirm the alternative hypoth-
esis that there is a difference in the distribution of promoted/not promoted
individuals between the four performance categories.

3.4 Foundational statistics in Python

Elementary descriptive statistics can be performed in Python using various
packages. Descriptive statistics of numpy arrays are usually available as meth-
ods.

import pandas as pd
import numpy as np

get data
url = "http://peopleanalytics-regression-book.org/data/salespeople.csv"
salespeople = pd.read_csv(url)

mean sales
mean_sales = salespeople.sales.mean()
print(mean_sales)

527.0057142857142

sample variance
var_sales = salespeople.sales.var()
print(var_sales)

3.4 Foundational statistics in Python 59

34308.11458043389

sample standard deviation
sd_sales = salespeople.sales.std()
print(sd_sales)

185.2244977869663

Population statistics can be obtained by setting the ddof parameter to zero.

population standard deviation
popsd_sales = salespeople.sales.std(ddof = 0)
print(popsd_sales)

184.9597020864771

The numpy covariance function produces a covariance matrix.

generate a sample covariance matrix between two variables
sales_rate = salespeople[['sales', 'customer_rate']]
sales_rate = sales_rate[~np.isnan(sales_rate)]
cov = sales_rate.cov()
print(cov)

sales customer_rate
sales 34308.114580 55.817691
customer_rate 55.817691 0.795820

Specific covariances between variable pairs can be pulled out of the matrix.

pull out specific covariances
print(cov['sales']['customer_rate'])

55.817691199345006

Similarly for Pearson correlation:

60 3 Statistics Foundations

sample pearson correlation matrix
cor = sales_rate.corr()
print(cor)

sales customer_rate
sales 1.000000 0.337805
customer_rate 0.337805 1.000000

Specific types of correlation coefficients can be accessed via the stats module
of the scipy package.

from scipy import stats

spearman's correlation
stats.spearmanr(salespeople.sales, salespeople.performance,
nan_policy='omit')

SpearmanrResult(correlation=0.27354459847452534, pvalue=2.00654343790
79837e-07)

kendall's tau
stats.kendalltau(salespeople.sales, salespeople.performance,
nan_policy='omit')

KendalltauResult(correlation=0.20736088105812, pvalue=2.73532582263
76615e-07)

Common hypothesis testing tools are available in scipy.stats. Here is an
example of how to perform Welch’s 𝑡-test on a difference in means of samples
of unequal variance.

get sales for top and bottom performers
perf1 = salespeople[salespeople.performance == 1].sales
perf4 = salespeople[salespeople.performance == 4].sales

welch's t-test with unequal variance
ttest = stats.ttest_ind(perf4, perf1, equal_var=False)
print(ttest)

3.4 Foundational statistics in Python 61

Ttest_indResult(statistic=4.629477606844271, pvalue=1.0932443461577
038e-05)

As seen above, hypothesis tests for non-zero correlation coefficients are per-
formed automatically as part of scipy.stats correlation calculations.

calculate correlation and p-value
sales = salespeople.sales[~np.isnan(salespeople.sales)]

cust_rate = salespeople.customer_rate[
~np.isnan(salespeople.customer_rate)

]

cor = stats.pearsonr(sales, cust_rate)
print(cor)

(0.33780504485867796, 8.647952212091035e-11)

Finally, a chi-square test of difference in frequency distribution can be per-
formed on a contingency table as follows. The first value of the output is the
𝜒2 statistic, and the second value is the p-value.

create contingency table for promoted versus performance
contingency = pd.crosstab(salespeople.promoted, salespeople.performance)

perform chi-square test
chi2_test = stats.chi2_contingency(contingency)
print(chi2_test)

(25.895405268094862, 1.0030629464566802e-
05, 3, array([[40.62857143, 74.48571429, 84.64285714, 37.24285714],
[19.37142857, 35.51428571, 40.35714286, 17.75714286]]))

62 3 Statistics Foundations

3.5 Learning exercises

3.5.1 Discussion questions

Where relevant in these discussion exercises, let 𝑥 = 𝑥1, 𝑥2, … , 𝑥𝑛 and
𝑦 = 𝑦1, 𝑦2, … , 𝑦𝑚 be samples of two random variables of length 𝑛 and 𝑚
respectively.

1. If the values of 𝑥 can only take the form 0 or 1, and if their mean
is 0.25, how many of the values equal 0?

2. If 𝑚 = 𝑛 and 𝑥 + 𝑦 is formed from the element-wise sum of 𝑥 and
𝑦, show that the mean of 𝑥 + 𝑦 is equal to the sum of the mean of
𝑥 and the mean of 𝑦.

3. For a scalar multiplier 𝑎, show that Var(𝑎𝑥) = 𝑎2Var(𝑥).
4. Explain why the standard deviation of 𝑥 is a more intuitive measure

of the deviation in 𝑥 than the variance.
5. Describe which two types of correlation you could use if 𝑥 is an

ordered ranking.
6. Describe the role of sample size and sampling frequency in the dis-

tribution of sampling means for a random variable.
7. Describe what a standard error of a statistic is and how it can

be used to determine a confidence interval for the true population
statistic.

8. If we conduct a t-test on the null hypothesis that 𝑥 and 𝑦 are drawn
from populations with the same mean, describe what a p-value of
0.01 means.

9. Extension: The sum of variance law states that, for independent
random variables 𝑥 and 𝑦, Var(𝑥 ± 𝑦) = Var(𝑥) + Var(𝑦). Use this
together with the identity from Exercise 3 to derive the formula for
the standard error of the mean of 𝑥 = 𝑥1, 𝑥2, … , 𝑥𝑛:

𝑆𝐸 = 𝜎(𝑥)√𝑛

10. Extension: In a similar way to Exercise 9, show that the standard
error for the difference between the means of 𝑥 and 𝑦 is

√𝜎(𝑥)2

𝑛 + 𝜎(𝑦)2

𝑚

3.5 Learning exercises 63

3.5.2 Data exercises

For these exercises, load the charity_donation data set via the peopleanalyt-
icsdata package, or download it from the internet9. This data set contains
information on a sample of individuals who made donations to a nature char-
ity.

1. Calculate the mean total_donations from the data set.
2. Calculate the sample variance for total_donation and convert this

to a population variance.
3. Calculate the sample standard deviation for total_donations and

verify that it is the same as the square root of the sample variance.
4. Calculate the sample correlation between total_donations and

time_donating. By using an appropriate hypothesis test, determine
if these two variables are independent in the overall population.

5. Calculate the mean and the standard error of the mean for the first
20 entries of total_donations.

6. Calculate the mean and the standard error of the mean for the first
50 entries of total_donations. Verify that the standard error is less
than in Exercise 5.

7. By using an appropriate hypothesis test, determine if the mean age
of those who made a recent donation is different from those who
did not.

8. By using an appropriate hypothesis test, determine if there is a
difference in whether or not a recent donation was made according
to where people reside.

9. Extension: By using an appropriate hypothesis test, determine if
the age of those who have recently donated is at least 10 years older
than those who have not recently donated in the population.

10. Extension: By using an appropriate hypothesis test, determine if
the average donation amount is at least 10 dollars higher for those
who recently donated versus those who did not. Retest for 20 dollars
higher.

9http://peopleanalytics-regression-book.org/data/charity_donation.csv

http://peopleanalytics-regression-book.org/

http://taylorandfrancis.com

4
Linear Regression for Continuous Outcomes

In this chapter, we will introduce and explore linear regression, one of the first
learning methods to be developed by statisticians and one of the easiest to
interpret. Despite its simplicity—indeed because of its simplicity—it can be a
very powerful tool in many situations. Linear regression will often be the first
methodology to be trialed on a given problem, and will give an immediate
benchmark with which to judge the efficacy of other, more complex, modeling
techniques. Given the ease of interpretation, many analysts will select a lin-
ear regression model over more complex approaches even if those approaches
produce a slightly better fit. This chapter will also introduce many critical
concepts that will apply to other modeling approaches as we proceed through
this book. Therefore for inexperienced modelers this should be considered a
foundational chapter which should not be skipped.

4.1 When to use it

4.1.1 Origins and intuition of linear regression

Linear regression, also known as Ordinary Least Squares linear regression or
OLS regression for short, was developed independently by the mathematicians
Gauss and Legendre at or around the first decade of the 19th century, and
there remains today some controversy about who should take credit for its
discovery. However, at the time of its discovery it was not actually known
as ‘regression’ . This term became more popular following the work of Fran-
cis Galton—a British intellectual jack-of-all-trades and a cousin of Charles
Darwin. In the late 1800s, Galton had researched the relationship between
the heights of a population of almost 1000 children and the average height of
their parents (mid-parent height). He was surprised to discover that there was
not a perfect relationship between the height of a child and the average height
of its parents, and that in general children’s heights were more likely to be
in a range that was closer to the mean for the total population. He described
this statistical phenomenon as a ‘regression towards mediocrity’ (‘regression’
comes from a Latin term approximately meaning ‘go back’).

DOI: 10.1201/9781003194156-4 65

https://doi.org/10.1201/9781003194156-4

66 4 Linear Regression for Continuous Outcomes

Figure 4.1 is a scatter plot of Galton’s data with the black solid line show-
ing what a perfect relationship would look like, the black dot-dashed line
indicating the mean child height and the red dashed line showing the actual
relationship determined by Galton1. You can regard the red dashed line as
‘going back’ from the perfect relationship (symbolized by the black line). This
might give you an intuition that will help you understand later sections of
this chapter. In an arbitrary data set, the red dashed line can lie anywhere
between the black dot-dashed line (no relationship) and the black solid line
(a perfect relationship). Linear regression is about finding the red dashed line
in your data and using it to explain the degree to which your input data (the
𝑥 axis) explains your outcome data (the 𝑦 axis).

55

60

65

70

75

80

62.5 65.0 67.5 70.0 72.5
Mid-Parent Height (inches)

C
hi

ld
 H

ei
gh

t (
in

ch
es

)

FIGURE 4.1: Galton’s study of the height of children introduced the term
’regression’

4.1.2 Use cases for linear regression

Linear regression is particularly suited to a problem where the outcome of
interest is on some sort of continuous scale (for example, quantity, money,
height, weight). For outcomes of this type, it can be a first port of call before
trying more complex modeling approaches. It is simple and easy to explain,
and analysts will often accept a somewhat poorer fit using linear regression
in order to avoid having to interpret a more complex model.

1This chart includes a random ‘jitter’ to better illustrate observations that are identical
and was first used to illustrate Galton’s data in Senn (2011).

4.1 When to use it 67

Here are some illustratory examples of questions that could be tackled with a
linear regression approach:

• Given a data set of demographic data, job data and current salary data, to
what extent can current salary be explained by the rest of the data?

• Given annual test scores for a set of students over a four-year period, what
is the relationship between the final test score and earlier test scores?

• Given a set of GPA data, SAT data and data on the percentile score on an
aptitude test for a set of job applicants, to what extent can the GPA and
SAT data explain the aptitude test score?

4.1.3 Walkthrough example

You are working as an analyst for the biology department of a large academic
institution which offers a four-year undergraduate degree program. The aca-
demic leaders of the department are interested in understanding how student
performance in the final-year examination of the degree program relates to
performance in the prior three years.

To help with this, you have been provided with data for 975 individuals grad-
uating in the past three years, and you have been asked to create a model to
explain each individual’s final examination score based on their examination
scores for the first three years of their program. The Year 1 examination scores
are awarded on a scale of 0–100, Years 2 and 3 on a scale of 0–200, and the
Final year is awarded on a scale of 0–300.

We will load the ugtests data set into our session and take a brief look at it.

if needed, download ugtests data
url <- "http://peopleanalytics-regression-book.org/data/ugtests.csv"
ugtests <- read.csv(url)

look at the first few rows of data
head(ugtests)

68 4 Linear Regression for Continuous Outcomes

Yr1 Yr2 Yr3 Final
1 27 50 52 93
2 70 104 126 207
3 27 36 148 175
4 26 75 115 125
5 46 77 75 114
6 86 122 119 159

The data looks as expected, with test scores for four years all read in as
numeric data types, but of course this is only a few rows. We need a quick
statistical and structural overview of the data.

view structure
str(ugtests)

'data.frame': 975 obs. of 4 variables:
$ Yr1 : int 27 70 27 26 46 86 40 60 49 80 ...
$ Yr2 : int 50 104 36 75 77 122 100 92 98 127 ...
$ Yr3 : int 52 126 148 115 75 119 125 78 119 67 ...
$ Final: int 93 207 175 125 114 159 153 84 147 80 ...

view statistical summary
summary(ugtests)

Yr1 Yr2 Yr3 Final
Min. : 3.00 Min. : 6.0 Min. : 8.0 Min. : 8
1st Qu.:42.00 1st Qu.: 73.0 1st Qu.: 81.0 1st Qu.:118
Median :53.00 Median : 94.0 Median :105.0 Median :147
Mean :52.15 Mean : 92.4 Mean :105.1 Mean :149
3rd Qu.:62.00 3rd Qu.:112.0 3rd Qu.:130.0 3rd Qu.:175
Max. :99.00 Max. :188.0 Max. :198.0 Max. :295

We can see that the results do seem to have different scales in the different
years as we have been informed, and judging by the means, students seem to
have found Year 2 exams more challenging. We can also be assured that there
is no missing data, as these would have been displayed as NA counts in our
summary if they existed.

We can also plot our four years of test scores pairwise to see any initial rela-
tionships of interest, as displayed in Figure 4.2.

4.2 Simple linear regression 69

library(GGally)

display a pairplot of all four columns of data
GGally::ggpairs(ugtests)

Corr:

0.028

Corr:

-0.020

Corr:

0.043

Corr:

0.020

Corr:

0.321***

Corr:

0.666***

Yr1 Yr2 Yr3 Final

Yr1
Yr2

Yr3
Final

0 25 50 75 1000 50 100 150 0 50 100 150 200 0 100 200 300

0.00

0.01

0.02

0

50

100

150

0

50

100

150

200

0

100

200

300

FIGURE 4.2: Pairplot of the ugtests data set

In the diagonal, we can see the distributions of the data in each column. We
observe relatively normal-looking distributions in each year. We can see scatter
plots and pairwise correlation statistics off the diagonal. For example, we see a
particularly strong correlation between Yr3 and Final test scores, a moderate
correlation between Yr2 and Final and relative independence elsewhere.

4.2 Simple linear regression

In order to visualize our approach and improve our intuition, we will start
with simple linear regression, which is the case where there is only a single
input variable and outcome variable.

70 4 Linear Regression for Continuous Outcomes

4.2.1 Linear relationship between a single input and an out-
come

Let our input variable be 𝑥 and our outcome variable be 𝑦. Recalling the
equation of a straight line, because we assume that the relationship is linear,
we expect the relationship to be of the form:

𝑦 = 𝑚𝑥 + 𝑐
where 𝑚 represents the slope or gradient of the line, and 𝑐 represents the point
at which the line intercepts the 𝑦 axis. When using a straight line to model a
relationship in the data, we call 𝑐 and 𝑚 the coefficients of the model.

Now let’s assume that we have a sample of 10 observations with which to
estimate our linear relationship. Let’s take the first 10 values of Yr3 and Final
in our ugtests data set:

(d <- head(ugtests[, c("Yr3", "Final")], 10))

Yr3 Final
1 52 93
2 126 207
3 148 175
4 115 125
5 75 114
6 119 159
7 125 153
8 78 84
9 119 147
10 67 80

We can do a simple plot of these observations as in Figure 4.3. Intuitively, we
can imagine a line passing through these points that ‘fits’ the general pattern.
For example, taking 𝑚 = 1.2 and 𝑐 = 5, the resulting line 𝑦 = 1.2𝑥 + 5 could
fit between the points we are given, as displayed in Figure 4.4.

This looks like an approximation of the relationship, but how do we know that
it is the best approximation?

4.2.2 Minimising the error

For each of our observations, we can determine an error in the fitted model
by calculating the difference between the real value of 𝑦 and the one predicted

4.2 Simple linear regression 71

80

120

160

200

50 75 100 125 150
Yr3

Fi
na

l

FIGURE 4.3: Basic scatter plot of 10 observations

y = 1.2x + 5

100

150

200

50 75 100 125 150
Yr3

Fi
na

l

FIGURE 4.4: Fitting 𝑦 = 1.2𝑥 + 5 to our 10 observations

72 4 Linear Regression for Continuous Outcomes

by our model. For example, at 𝑥 = 52, our modeled value of y is 67.4, but
the real value is 93, producing an error of 25.6. These errors are known as
the residuals of our model. The residuals for the 10 points in our data set are
illustrated by the solid red line segments in Figure 4.5. It looks like at least
one of our residuals is pretty large.

y = 1.2x + 5

100

150

200

50 75 100 125 150
Yr3

Fi
na

l

FIGURE 4.5: Residuals of 𝑦 = 1.2𝑥 + 5 for our 10 observations

The error of our model—which we want to minimize—could be defined in a
number of ways:

1. The average of our residuals
2. The average of the absolute values of our residuals (so that negative

values are converted to positive values)
3. The average of the squares of our residuals (note that all squares

are positive)

For a number of reasons (not least the fact that at the time this method was
developed it was one of the easiest to derive), the most common approach is
number 3, which is why we call our regression model Ordinary Least Squares
regression. Some algebra and calculus can help us determine the equation of
the line that generates the least-squared residual error. For more of the theory
behind this, consult Montgomery, Peck, and Vining (2012), but let’s look at
how this works in practice.

4.2 Simple linear regression 73

4.2.3 Determining the best fit

We can run a fairly simple function in R to calculate the best fit linear model
for our data. Once we have run that function, the model and all the details
will be saved in our session for further investigation or use.

First we need to express the model we are looking to calculate as a formula.
In this simple case, we want to regress the outcome 𝑦 = Final against the
input 𝑥 = Yr3, and therefore we would use the simple formula notation Final
~ Yr3. Now we can use the lm() function to calculate the linear model based
on our data set and our formula.

calculate model
model <- lm(formula = Final ~ Yr3, data = d)

The model object that we have created is a list of a number of different pieces
of information, which we can see by looking at the names of the objects in the
list.

view the names of the objects in the model in a column
model_objects <- names(model)
as.data.frame(model_objects)

model_objects
1 coefficients
2 residuals
3 effects
4 rank
5 fitted.values
6 assign
7 qr
8 df.residual
9 xlevels
10 call
11 terms
12 model

So we can already see some terms we are familiar with. For example, we can
look at the coefficients.

74 4 Linear Regression for Continuous Outcomes

model$coefficients

(Intercept) Yr3
16.630452 1.143257

This tells us that that our best fit model—the one that minimizes the average
squares of the residuals—is 𝑦 = 1.14𝑥 + 16.63. In other words, our Final test
score can be expected to take a value of 16.63 even with zero score in the Yr3
input, and every additional point scored in Yr3 will increase the Final score
by 1.14.

4.2.4 Measuring the fit of the model

We have calculated a model which minimizes the average squared residual
error for the sample of data that we have, but we don’t really have a sense
of how ‘good’ the model is. How do we tell how well our model uses the
input data to explain the outcome? This is an important question to answer
because you would not want to propose a model that does not do a good job
of explaining your outcome, and you also may need to compare your model
to other alternatives, which will require some sort of benchmark metric. One
natural way to benchmark how good a job your model does of explaining
the outcome is to compare it to a situation where you have no input and no
model at all. In this situation, all you have is your outcome values, which can
be considered a random variable with a mean and a variance. In the case of
our 10 observations, we have 10 values of Final with a mean of 133.7. We
can consider the horizontal line representing the mean of 𝑦 as our ‘random
model’ , and we can calculate the residuals around the mean. This can be seen
in Figure 4.6.

Recall from Section 3.1.1 the definition of the population variance of 𝑦, notated
as Var(𝑦). Note that it is defined as the average of the squares of the resid-
uals around the mean of 𝑦. Therefore Var(𝑦) represents the average squared
residual error of a random model. This calculates in this case to 1574.21. Let’s
overlay our fitted model onto this random model in Figure 4.7.

So for most of our observations (though not all) we seem to have reduced the
‘distance’ from the random model by fitting our new model. If we average the
square of our residuals for the fitted model, we obtain the average squared
residual error of our fitted model, which calculates to 398.35.

Therefore, before we fit our model, we have an error of 1574.21, and after we
fit it, we have an error of 398.35. So we have reduced the error of our model
by 1175.86 or, expressed as a proportion, by 0.75. In other words, we can say
that our model explains 0.75 (or 75%) of the variance of our outcome.

4.2 Simple linear regression 75

y = 133.70

80

120

160

200

50 75 100 125 150
Yr3

Fi
na

l

FIGURE 4.6: Residuals of our 10 observations around their mean value

y = 133.70

y = 1.14x + 16.63

80

120

160

200

50 75 100 125 150
Yr3

Fi
na

l

FIGURE 4.7: Comparison of residuals of fitted model (red) against random
variable (blue)

76 4 Linear Regression for Continuous Outcomes

This metric is known as the 𝑅2 of our model and is the primary metric used
in measuring the fit of a linear regression model2.

4.3 Multiple linear regression

In reality, regression problems rarely involve one single input variable, but
rather multiple variables. The methodology for multiple linear regression is
similar in nature to simple linear regression, but obviously more difficult to
visualize because of its increased dimensionality.

In this case, our inputs are a set of 𝑝 variables 𝑥1, 𝑥2, … , 𝑥𝑝. Extending the
linear equation in Section 4.2.1, we seek to develop an equation of the form:

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑝𝑥𝑝

so that our average squared residual error is minimized.

4.3.1 Running a multiple linear regression model and inter-
preting its coefficients

A multiple linear regression model is run in a similar way to a simple linear
regression model, with your formula notation determining what outcome and
input variables you wish to have in your model. Let’s now perform a multiple
linear regression on our entire ugtests data set and regress our Final test
score against all prior test scores using the formula Final ~ Yr3 + Yr2 + Yr1
and determine our coefficients as before.

model <- lm(data = ugtests, formula = Final ~ Yr3 + Yr2 + Yr1)
model$coefficients

(Intercept) Yr3 Yr2 Yr1
14.14598945 0.86568123 0.43128539 0.07602621

Referring to our formula in Section 4.3, let’s understand what each coefficient
𝛽0, 𝛽1, … , 𝛽𝑝 means. 𝛽0, the intercept of the model, represents the value of 𝑦

2As a side note, in a simple regression model like this, where there is only one input
variable, we have the simple identity 𝑅2 = 𝑟2, where 𝑟 is the correlation between the input
and outcome (for our small set of 10 observations here, the correlation is 0.864).

4.3 Multiple linear regression 77

assuming that all the inputs were zero. You can imagine that your output can
be expected to have a base value even without any inputs—a student who
completely flunked the first three years can still redeem themselves to some
extent in the Final year.

Now looking at the other coefficients, let’s consider what happens if our first
input 𝑥1 increased by a single unit, assuming nothing else changed. We would
then expect our value of y to increase by 𝛽1. Similarly for any input 𝑥𝑘, a unit
increase would result in an increase in 𝑦 of 𝛽𝑘, assuming no other changes in
the inputs.

In the case of our ugtests data set, we can say the following:

• The intercept of the model is 14.146. This is the value that a student could
be expected to score on their final exam even if they had scored zero in all
previous exams.

• The Yr3 coefficient is 0.866. Assuming no change in other inputs, this is the
increase in the Final exam score that could be expected from an extra point
in the Year 3 score.

• The Yr2 coefficient is 0.431. Assuming no change in other inputs, this is the
increase in the Final exam score that could be expected from an extra point
in the Year 2 score.

• The Yr1 coefficient is 0.076. Assuming no change in other inputs, this is the
increase in the Final exam score that could be expected from an extra point
in the Year 1 score.

4.3.2 Coefficient confidence

Intuitively, these coefficients appear too precise for comfort. After all, we are
attempting to estimate a relationship based on a limited set of data. In partic-
ular, looking at the Yr1 coefficient, it seems to be very close to zero, implying
that there is a possibility that the Year 1 examination score has no impact on
the final examination score. Like in any statistical estimation, the coefficients
calculated for our model have a margin of error. Typically, in any such situa-
tion, we seek to know a 95% confidence interval to set a standard of certainty
around the values we are interpreting.
The summary() function is a useful way to gather critical information in your
model, including important statistics on your coefficients:

model_summary <- summary(model)
model_summary$coefficients

78 4 Linear Regression for Continuous Outcomes

Estimate Std. Error t value Pr(>|t|)
(Intercept) 14.14598945 5.48005618 2.581358 9.986880e-03
Yr3 0.86568123 0.02913754 29.710169 1.703293e-138
Yr2 0.43128539 0.03250783 13.267124 4.860109e-37
Yr1 0.07602621 0.06538163 1.162807 2.451936e-01

The 95% confidence interval corresponds to approximately two standard errors
above or below the estimated value. For a given coefficient, if this confidence
interval includes zero, you cannot reject the hypothesis that the variable has
no relationship with the outcome. Another indicator of this is the Pr(>|t|)
column of the coefficient summary, which represents the p-value of the null
hypothesis that the input variable has no relationship with the outcome. If
this value is less than a certain threshold (usually 0.05), you can conclude
that this variable has a statistically significant relationship with the outcome.
To see the precise confidence intervals for your model coefficients, you can use
the confint() function.

confint(model)

2.5 % 97.5 %
(Intercept) 3.39187185 24.9001071
Yr3 0.80850142 0.9228610
Yr2 0.36749170 0.4950791
Yr1 -0.05227936 0.2043318

In this case, we can conclude that the examinations in Years 2 and 3 have
a significant relationship with the Final examination score, but we cannot
conclude this for Year 1. Effectively, this means that we can drop Yr1 from
our model with no substantial loss of fit. In general, simpler models are easier
to manage and interpret, so let’s remove the non-significant variable now.

newmodel <- lm(data = ugtests, formula = Final ~ Yr3 + Yr2)

Given that our new model only has three dimensions, we have the luxury of
visualizing it. Figure 4.8 shows the data and the fitted plane of our model.

4.3.3 Model ‘goodness-of-fit’

At this point we can further explore the overall summary of our model. As you
saw in the previous section, our model summary contains numerous objects

4.3 Multiple linear regression 79

FIGURE 4.8: 3D visualization of the fitted newmodel against the ugtests
data

of interest, including statistics on the coefficients of our model. We can see
what is inside our summary by looking at the names of its contents, and we
can then dive in and explore specific objects of interest.

get summary of new model
newmodel_summary <- summary(newmodel)

see summary contents
summary_objects <- names(newmodel_summary)
as.data.frame(summary_objects)

summary_objects
1 call
2 terms
3 residuals
4 coefficients
5 aliased
6 sigma
7 df
8 r.squared
9 adj.r.squared

80 4 Linear Regression for Continuous Outcomes

10 fstatistic
11 cov.unscaled

view r-squared
newmodel_summary$r.squared

[1] 0.5296734

We can see that our model explains more than half of the variance in the Final
examination score. Alternatively, we can view the entire summary to receive
a formatted report on our model.

see full model summary
newmodel_summary

##
Call:
lm(formula = Final ~ Yr3 + Yr2, data = ugtests)
##
Residuals:
Min 1Q Median 3Q Max
-91.12 -20.36 -0.22 18.94 98.29
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 18.08709 4.30701 4.199 2.92e-05 ***
Yr3 0.86496 0.02914 29.687 < 2e-16 ***
Yr2 0.43236 0.03250 13.303 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 30.44 on 972 degrees of freedom
Multiple R-squared: 0.5297, Adjusted R-squared: 0.5287
F-statistic: 547.3 on 2 and 972 DF, p-value: < 2.2e-16

This provides us with some of the most important metrics from our model.
In particular, the last line gives us a report on our overall model confidence
or ‘goodness-of-fit’—this is a hypothesis test on the null hypothesis that our
model does not fit the data any better than a random model. A high F-statistic
indicates a strong likelihood that the model fits the data better than a random

4.3 Multiple linear regression 81

model. More intuitively, perhaps, we also have the p-value for the F-statistic.
In this case it is extremely small, so we can reject the null hypothesis and
conclude that our model has significant explanatory power over and above a
random model.

Be careful not to confuse model goodness-of-fit with 𝑅2. Depending on your
sample, it is entirely possible for a model with a low 𝑅2 to have high certainty
for goodness-of-fit and vice versa.

4.3.4 Making predictions from your model

While this book focuses on inferential rather than predictive analytics, we
briefly touch here on the mechanics of generating predictions from models. As
you might imagine, once the model has been fitted, prediction is a relatively
straightforward process. We feed the Yr2 and Yr3 examination scores into our
fitted model, and it applies the coefficients to calculate the predicted outcome.
Let’s look at three fictitious students and create a dataframe with their scores
to input into the model.

(new_students <- data.frame(
Yr2 = c(67, 23, 88),
Yr3 = c(144, 100, 166)

))

Yr2 Yr3
1 67 144
2 23 100
3 88 166

Now we can feed these values into our model to get predictions of the Final
examination result for our three new students.

use newmodel to predict for new_students
predict(newmodel, new_students)

1 2 3
171.6093 114.5273 199.7179

We know from our earlier work in this chapter that there is a confidence
interval around the coefficients of our model, which means that there is a range

82 4 Linear Regression for Continuous Outcomes

of values for our prediction according to those confidence intervals. This can
be determined by specifying that you require a confidence interval for your
predictions.

get a confidence interval
predict(newmodel, new_students, interval = "confidence")

fit lwr upr
1 171.6093 168.2125 175.0061
2 114.5273 109.7081 119.3464
3 199.7179 195.7255 203.7104

You may also recall from Chapter 1 that any observation in our outcome is
subject to uncontrollable error, so that there is a further margin of ‘prediction
error’ , even after we take into consideration the confidence interval of our
fitted model. Therefore to generate a more reliable prediction range to use in
real life, which takes this random, uncontrollable error into consideration, you
should calculate a ‘prediction interval’ .

get a prediction interval
predict(newmodel, new_students, interval = "prediction")

fit lwr upr
1 171.6093 111.77795 231.4406
2 114.5273 54.59835 174.4562
3 199.7179 139.84982 259.5860

As discussed in Chapter 1, the process of developing a model to predict an
outcome can be quite different from developing a model to explain an outcome.
For a start, it is unlikely that you would use your entire sample to fit a
predictive model, as you would want to reserve a portion of your data to test
for its fit on new data. Since the focus of this book is inferential modeling,
much of this topic will be out of our scope.

4.4 Managing inputs in linear regression

Our walkthrough example for this chapter, while useful for illustrating the
key concepts, is a very straightforward data set to run a model on. There is

4.4 Managing inputs in linear regression 83

no missing data, and all the data inputs have the same numeric data type (in
the exercises at the end of this chapter we will present a more varied data set
for analysis). Commonly, an analyst will have a list of possible input variables
that they can consider in their model, and rarely will they run a model using
all of these variables. In this section we will cover some common elements of
decision making and design of input variables in regression models.

4.4.1 Relevance of input variables

The first step in managing your input variables is to make a judgment about
their relevance to the outcome being modeled. Analysts should not blindly
run a model on a set of variables before considering their relevance. There are
two common reasons for rejecting the inclusion of an input variable:

1. There is no reasonable possibility of a direct or indirect causal re-
lationship between the input and the outcome. For example, if you
were provided with the height of each individual taking the Final
examination in our walkthrough example, it would be difficult to
see how that could reasonably relate to the outcome that you are
modeling.

2. If there is a possibility that the model will be used to predict based
on new data in the future, there may be variables that you explicitly
do not wish to be used in any prediction. For example, if our walk-
through model contained student gender data, we would not want
to include that in a model that predicted future student scores be-
cause we would not want gender to be taken into consideration when
determining student performance.

4.4.2 Sparseness (‘missingness’) of data

Missing data is a very common problem in modeling. If an observation has
missing data in a variable that is being included in the model, that observation
will be ignored, or an error will be thrown. This forces a model trained on a
smaller set of data, which can compromise its powers of inference. Running
summary functions on your data (such as summary() in R) will reveal variables
that contain missing data if they exist.

There are three main options for how missing data is handled:

1. If the data for a given variable is relatively complete and only a small
number of observations are missing, it’s usually best and simplest
to remove the observations that are missing from the data set. Note

84 4 Linear Regression for Continuous Outcomes

that many modeling functions (though not all) will take care of this
automatically.

2. As data becomes more sparse, removing observations becomes less
of an option. If the sparseness is massive (for example, more than
half of the data is missing), then there is no choice but to remove
that variable from the model. While this may be unsatisfactory
for a given variable (because it is thought to have an important
explanatory role), the fact remains that data that is mostly missing
is not a good measure of a construct in the first place.

3. Moderate sparse data could be considered for imputation. Imputa-
tion methods involve using the overall statistical properties of the
entire data set or of specific other variables to ‘suggest’ what the
missing value might be, ranging from simple mean and median val-
ues to more complex imputation methods. Imputation methods are
more commonly used in predictive settings, and we will not cover
imputation methods in depth here.

4.4.3 Transforming categorical inputs to dummy variables

Many models will have categorical inputs rather than numerical inputs. Cat-
egorical inputs usually take forms such as:

• Binary values—for example, Yes/No, True/False
• Unordered categories—for example Car, Train, Bicycle
• Ordered categories—for example Low, Medium, High

Categorical variables do not behave like numerical variables. There is no sense
of quantity in a categorical variable. We do not know how a Car relates to a
Train quantitatively, we only know that they are different. Even for an ordered
category, although we know that ‘Medium’ is higher than ‘Low’ , we do not
know how much higher or indeed whether the difference is the same as that
between ‘High’ and ‘Medium’ .

In general, all model input variables should take a numeric form. The most
reliable way to do this is to convert categorical values to dummy variables.
While some packages and functions have a built-in ability to convert categor-
ical data to dummy variables, not all do, so it is important to know how to
do this yourself. Consider the following data set:

(vehicle_data <- data.frame(
make = c("Ford", "Toyota", "Audi"),
manufacturing_cost = c(15000, 19000, 28000)

))

4.4 Managing inputs in linear regression 85

make manufacturing_cost
1 Ford 15000
2 Toyota 19000
3 Audi 28000

The make data is categorical, so it will be converted to several columns for each
possible value of make, and binary labeling will be used to identify whether
that value is present in that specific observation. Many packages and functions
are available to conveniently do this, for example:

library(dummies)
(dummy_vehicle <- dummies::dummy("make", data = vehicle_data))

makeAudi makeFord makeToyota
1 0 1 0
2 0 0 1
3 1 0 0

Dummy variables can then replace the original make column to get your data
set ready for modeling.

(vehicle_data_dummies <- cbind(
manufacturing_cost = vehicle_data$manufacturing_cost,
dummy_vehicle

))

manufacturing_cost makeAudi makeFord makeToyota
1 15000 0 1 0
2 19000 0 0 1
3 28000 1 0 0

It is worth a moment to consider how to interpret coefficients of dummy
variables in a linear regression model. Note that all observations will have
one of the dummy variable values (all cars must have a make). Therefore the
model will assume a ‘reference value’ for the categorical variable—often this
is the first value in alphabetical or numerical order. In this case, Audi would
be the reference dummy variable. The model then calculates the effect on the
outcome variable of a ‘switch’ from Audi to one of the other dummies3. If we
were to try to use the data in our vehicle_data_dummies data set to explain
the retail price of a vehicle, we would interpret coefficients like this:

3For more on how to control which categorical value is used as a reference, see Section
6.3.1.

86 4 Linear Regression for Continuous Outcomes

• Comparing two cars of the same make, we would expect each extra dollar
spent on manufacturing to change the retail price by …

• Comparing a Ford with an Audi of the same manufacturing cost, we would
expect a difference in retail price of …

• Comparing a Toyota with an Audi of the same manufacturing cost, we would
expect a difference in retail price of …

This highlights the importance of appropriate interpretation of coefficients,
and in particular the proper understanding of units. It will be common to
see much larger coefficients for dummy variables in regression models because
they represent a binary ‘all’ or ‘nothing’ variable in the model. The coefficient
for manufacturing cost would be much smaller because a unit in this case is
a dollar of manufacturing spend, on a scale of many thousands of potential
dollars in spend. Care should be taken not to ‘rank’ coefficients by their value.
Higher coefficients in and of themselves do not imply greater importance4.

4.5 Testing your model assumptions

All modeling techniques have underlying assumptions about the data that
they model and can generate inaccurate results when those assumptions do
not hold true. Conscientious analysts will verify that these assumptions are
satisfied before finalizing their modeling efforts. In this section we will outline
some common checks of model assumptions when running linear regression
models.

4.5.1 Assumption of linearity and additivity

Linear regression assumes that the relationship we are trying to model is linear
and additive in nature. Therefore you can expect problems if you are using
this approach to model a pattern that is not linear or additive.

You can check whether your linearity assumption was reasonable in a couple
of ways. You can plot the true versus the predicted (fitted) values to see if they
look correlated. You can see such a plot on our student examination model in
Figure 4.9.

4Rescaling numerical input variables onto common scales can help with understanding the
ranked importance of these variables. In some techniques, for example structural modeling
which we will review in Section 8.2, scaled regression coefficients help determine the ranked
importance of constructs to the outcome.

4.5 Testing your model assumptions 87

predicted_values <- newmodel$fitted.values
true_values <- ugtests$Final

plot true values against predicted values
plot(predicted_values, true_values)

100 150 200 250

0
50

10
0

20
0

30
0

predicted_values

tru
e_

va
lu

es

FIGURE 4.9: Plot of true versus fitted/predicted student scores

Alternatively, you can plot the residuals of your model against the predicted
values and look for the pattern of a random distribution (that is, no major
discernible pattern) such as in Figure 4.10.

residuals <- newmodel$residuals

plot residuals against predicted values
plot(predicted_values, residuals)

You can also plot the residuals against each input variable as an extra check
of independent randomness, looking for a reasonably random distribution in
all cases. If you find that your residuals are following a clear pattern and are
not random in nature, this is an indication that a linear model is not a good
choice for your data.

88 4 Linear Regression for Continuous Outcomes

100 150 200 250

-5
0

0
50

10
0

predicted_values

re
si

du
al

s

FIGURE 4.10: Plot of residuals against fitted/predicted scores

4.5.2 Assumption of constant error variance

It is assumed in a linear model that the errors or residuals are homoscedas-
tic—this means that their variance is constant across the values of the input
variables. If the errors of your model are heteroscedastic—that is, if they in-
crease or decrease according to the value of the model inputs—this can lead
to poor estimations and inaccurate inferences.

While a simple plot of residuals against predicted values (such as in Figure
4.10) can give a quick indication on homoscedacity, to be thorough the residu-
als should be plotted against each input variable, and it should be verified that
the range of the residuals remains broadly stable. In our student examination
model, we can first plot the residuals against the values of Yr2 in Figure 4.11.

Yr2 <- ugtests$Yr2

plot residuals against Yr2 values
plot(Yr2, residuals)

We see a pretty consistent range of values for the residuals in 4.11. Similarly
we can plot the residuals against the values of Yr3, as in Figure 4.12.

4.5 Testing your model assumptions 89

0 50 100 150

-5
0

0
50

10
0

Yr2

re
si

du
al

s

FIGURE 4.11: Plot of residuals against Yr2 values

Yr3 <- ugtests$Yr3

plot residuals against Yr3 values
plot(Yr3, residuals)

Figure 4.12 also shows a consistent range of values for the residuals, which
reassures us that we have homoscedacity.

4.5.3 Assumption of normally distributed errors

In an appropriate model we expect our errors to be random, so we would
therefore expect our residuals to be normally distributed over sufficient num-
bers of observations. If our residuals are distributed differently, this is again
an indicator of an inappropriate model and can result in inaccurate estimates
of confidence intervals and the statistical significance of coefficients.

The quickest way to determine if residuals in your sample are consistent with
a normal distribution is to run a quantile-quantile plot (or Q-Q plot) on the
residuals. This will plot the observed quantiles of your sample against the
theoretical quantiles of a normal distribution. The closer this plot looks like
a perfect correlation, the more certain you can be that this normality as-

90 4 Linear Regression for Continuous Outcomes

50 100 150 200

-5
0

0
50

10
0

Yr3

re
si

du
al

s

FIGURE 4.12: Plot of residuals against Yr3 values

sumption holds. An example for our student examination model is in Figure
4.13.

normal distribution qqplot of residuals
qqnorm(newmodel$residuals)

4.5.4 Avoiding high collinearity and multicollinearity between
input variables

In multiple linear regression, the various input variables used can be considered
‘dimensions’ of the problem or model. In theory, we ideally expect dimensions
to be independent and uncorrelated. Practically speaking, however, it’s very
challenging in large data sets to ensure that every input variable is completely
uncorrelated from another. For example, even in our limited ugtests data set
we saw in Figure 4.2 that Yr2 and Yr3 examination scores are correlated to
some degree.

While some correlation between input variables can be expected and tolerated
in linear regression models, high levels of correlation can result in significant
inflation of coefficients and inaccurate estimates of p-values of coefficients.

Collinearity means that two input variables are highly correlated. The defi-
nition of ‘high correlation’ is a matter of judgment, but as a rule of thumb

4.5 Testing your model assumptions 91

-3 -2 -1 0 1 2 3

-5
0

0
50

10
0

Normal Q-Q Plot

Theoretical Quantiles

Sa
m

pl
e

Q
ua

nt
ile

s

FIGURE 4.13: Quantile-quantile plot of residuals

correlations greater than 0.5 might be considered high and greater than 0.7
might be considered extreme. Creating a simple correlation matrix or a pair-
plot (such as Figure 4.2) can immediately surface high or extreme collinearity.

Multicollinearity means that there is a linear relationship between more than
two of the input variables. This may not always present itself in the form
of high correlations between pairs of input variables, but may be seen by
identifying ‘clusters’ of moderately correlated variables, or by calculating a
Variance Inflation Factor (VIF) for each input variable—where VIFs greater
than 5 indicate high multicollinearity. Easy-to-use tests also exist in statistical
software for identifying multicollinearity (for example the mctest package in
R). Here is how we would test for multicollinearity in our student examination
model.

library(mctest)

diagnose possible overall presence of multicollinearity
mctest::omcdiag(newmodel)

92 4 Linear Regression for Continuous Outcomes

##
Call:
mctest::omcdiag(mod = newmodel)
##
##
Overall Multicollinearity Diagnostics
##
MC Results detection
Determinant |X'X|: 0.9981 0
Farrar Chi-Square: 1.8365 0
Red Indicator: 0.0434 0
Sum of Lambda Inverse: 2.0038 0
Theil's Method: -0.5259 0
Condition Number: 9.1952 0
##
1 --> COLLINEARITY is detected by the test
0 --> COLLINEARITY is not detected by the test

if necessary, diagnose specific multicollinear variables using VIF
mctest::imcdiag(newmodel, method = "VIF")

##
Call:
mctest::imcdiag(mod = newmodel, method = "VIF")
##
##
VIF Multicollinearity Diagnostics
##
VIF detection
Yr3 1.0019 0
Yr2 1.0019 0
##
NOTE: VIF Method Failed to detect multicollinearity
##
##
0 --> COLLINEARITY is not detected by the test
##
===================================

Note that collinearity and multicollinearity only affect the coefficients of the
variables impacted, and do not affect other variables or the overall statistics
and fit of a model. Therefore, if a model is being developed primarily to
make predictions and there is little interest in using the model to explain a
phenomenon, there may not be any need to address this issue at all. However,
in inferential modeling the accuracy of the coefficients is very important, and

4.6 Extending multiple linear regression 93

so testing of multicollinearity is essential. In general, the best way to deal with
collinear variables is to remove one of them from the model (usually the one
that has the least significance in explaining the outcome).

4.6 Extending multiple linear regression

We wrap up this chapter by introducing some simple extensions of linear
regression, with a particular aim of trying to improve the overall fit of a model
by relaxing the linear or additive assumptions. It is rare for practitioners to
extend linear regression models too greatly due to the negative impact this
can have on interpretation, but simple extensions such as experimenting with
interaction terms or quadratics are not uncommon. If you have an appetite to
explore this topic more fully, I recommend Rao et al. (2008).

4.6.1 Interactions between input variables

Recall that our model of student examination scores took each year’s score as
an independent input variable, and therefore we are making the assumption
that the score obtained in each year acts independently and additively in
predicting the Final score. However, it is very possible that several input
variables act together in relation to the outcome. One way of modeling this
is to include interaction terms in your model, which are new input variables
formed as products of the original input variables.

In our student examination data in ugtests, we could consider extending our
model to not only include the individual year examinations, but also to include
the impact of combined changes across multiple years. For example, we could
combine the impact of Yr2 and Yr3 examinations by multiplying them together
in our model.

interaction_model <- lm(data = ugtests,
formula = Final ~ Yr2 + Yr3 + Yr2*Yr3)

summary(interaction_model)

94 4 Linear Regression for Continuous Outcomes

##
Call:
lm(formula = Final ~ Yr2 + Yr3 + Yr2 * Yr3, data = ugtests)
##
Residuals:
Min 1Q Median 3Q Max
-78.084 -18.284 -0.546 18.395 79.824
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.320e+02 1.021e+01 12.928 < 2e-16 ***
Yr2 -7.947e-01 1.056e-01 -7.528 1.18e-13 ***
Yr3 -2.267e-01 9.397e-02 -2.412 0.0161 *
Yr2:Yr3 1.171e-02 9.651e-04 12.134 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 28.38 on 971 degrees of freedom
Multiple R-squared: 0.5916, Adjusted R-squared: 0.5903
F-statistic: 468.9 on 3 and 971 DF, p-value: < 2.2e-16

We see that introducing this interaction term has improved the fit of our
model from 0.53 to 0.59, and that the interaction term is significant, so we
conclude that in addition to a significant effect of the Yr2 and Yr3 scores, there
is an additional significant effect from their interaction Yr2*Yr3. Let’s take a
moment to understand how to interpret this, since we note that some of the
coefficients are now negative.

Our model now includes two input variables and their interaction, so it can
be written as

Final = 𝛽0 + 𝛽1Yr3 + 𝛽2Yr2 + 𝛽3Yr3Yr2
= 𝛽0 + (𝛽1 + 𝛽3Yr2)Yr3 + 𝛽2Yr2
= 𝛽0 + 𝛾Yr3 + 𝛽2Yr2

where 𝛾 = 𝛽1 + 𝛽3Yr2. Therefore our model has coefficients which are not
constant but change with the values of the input variables. We can conclude
that the effect of an extra point in the examination in Year 3 will be different
depending on how the student performed in Year 2. Visualizing this, we can
see in Figure 4.14 that this non-constant term introduces a curvature to our
fitted surface that aligns it a little more closely with the observations in our
data set.

By examining the shape of this curved plane, we can observe that the model
considers trajectories in the Year 2 and Year 3 examination scores. Those
individuals who have improved from one year to the next will perform better

4.6 Extending multiple linear regression 95

FIGURE 4.14: 3D visualization of the fitted interaction_model against the
ugtests data

in this model than those who declined. To demonstrate, let’s look at the
predicted scores from our interaction_model for someone who declined and
for someone who improved from Year 2 to Year 3.

data frame with a declining and an improving observation
obs <- data.frame(
Yr2 = c(150, 75),
Yr3 = c(75, 150)

)

predict(interaction_model, obs)

1 2
127.5010 170.1047

Through including the interaction effect, the model interprets declining ex-
amination scores more negatively than improving examination scores. These

96 4 Linear Regression for Continuous Outcomes

kinds of additional inferential insights may be of great interest. However, con-
sider the impact on interpretability of modeling too many combinations of
interactions. As always, there is a trade-off between intepretability and accu-
racy5.

When running models with interaction terms, you can expect to see a hierar-
chy in the coefficients according to the level of the interaction. For example,
single terms will usually generate higher coefficients than interactions of two
terms, which will generate higher coefficients than interactions of three terms,
and so on. Given this, whenever an interaction of terms is considered signif-
icant in a model, then the single terms contained in that interaction should
automatically be regarded as significant.

4.6.2 Quadratic and higher-order polynomial terms

In many situations the real underlying relationship between the outcome and
the inputs may be non-linear. For example, if the underlying relationship was
thought to be quadratic on a given input variable 𝑥, then the formula would
take the form 𝑦 = 𝛽0 +𝛽1𝑥+𝛽2𝑥2. We can easily trial polynomial terms using
our linear model technology.

For example, recall that we removed Yr1 data from our model because it was
not significant when modeled linearly. We could test if a quadratic model on
Yr1 helps improve our fit6:

add a quadratic term in Yr1
quadratic_yr1_model <- lm(data = ugtests,

formula = Final ~ Yr3 + Yr2 + Yr1 + I(Yr1^2))

test R-squared
summary(quadratic_yr1_model)$r.squared

[1] 0.5304198

In this case we find that modeling Yr1 as a quadratic makes no difference to
the fit of the model.

5In a predictive context, there is also the issue of ‘overfitting’ the model, where the
model is too ‘tightly’ aligned to the past data that was used in fitting it that it may be very
inaccurate for new data. For example, in our interaction model, someone who scores very
low in both Year 2 and Year 3 will be awarded an unreasonably high score (see the intercept
coefficient in the interactive model summary). This reinforces the need to test and validate
model fits in a predictive context.

6Note the use of I() in the formula notation here. This is because the symbol ^ has a
different meaning inside a formula, and we use I() to isolate what is inside the parentheses
to ensure that it is interpreted literally as ‘the square of Yr1’ .

4.7 Learning exercises 97

4.7 Learning exercises

4.7.1 Discussion questions

1. What is the approximate meaning of the term ‘regression’ ? Why is
the term particularly suited to the methodology described in this
chapter?

2. What basic condition must the outcome variable satisfy for linear
regression to be a potential modeling approach? Describe some ideas
for problems that might be modeled using linear regression.

3. What is the difference between simple linear regression and multiple
linear regression?

4. What is a residual, and how does it relate to the term ‘Ordinary
Least Squares’ ?

5. How are the coefficients of a linear regression model interpreted?
Explain why higher coefficients do not necessarily imply greater
importance.

6. How is the 𝑅2 of a linear regression model interpreted? What are
the minimum and maximum possible values for 𝑅2, and what does
each mean?

7. What are the key considerations when preparing input data for a
linear regression model?

8. Describe your understanding of the term ‘dummy variable’ . Why
are dummy variable coefficients often larger than other coefficients
in linear regression models?

9. Describe the term ‘collinearity’ and why it is an important consid-
eration in regression models.

10. Describe some ways that linear regression models can be extended
into non-linear models.

4.7.2 Data exercises

Load the sociological_data data set via the peopleanalyticsdata package or
download it from the internet7. This data represents a sample of information
obtained from individuals who participated in a global research study and
contains the following fields:

7http://peopleanalytics-regression-book.org/data/sociological_data.csv

http://peopleanalytics-regression-book.org/

98 4 Linear Regression for Continuous Outcomes

• annual_income_ppp: The annual income of the individual in PPP adjusted
US dollars

• average_wk_hrs: The average number of hours per week worked by the indi-
vidual

• education_months: The total number of months spent by the individual in
formal primary, secondary and tertiary education

• region: The region of the world where the individual lives
• job_type: Whether the individual works in a skilled or unskilled profession
• gender: The gender of the individual
• family_size: The size of the individual’s family of dependents
• work_distance: The distance between the individual’s residence and work-

place in kilometers
• languages: The number of languages spoken fluently by the individual

Conduct some exploratory data analysis on this data set. Including:

1. Identify the extent to which missing data is an issue.
2. Determine if the data types are appropriate for analysis.
3. Using a correlation matrix, pairplot or alternative method, identify

whether collinearity is present in the data.
4. Identify and discuss anything else interesting that you see in the

data.

Prepare to build a linear regression model to explain the variation in an-
nual_income_ppp using the other data in the data set.

5. Are there any fields which you believe should not be included in the
model? If so, why?

6. Would you consider imputing missing data for some or all fields
where it is an issue? If so, what might be some simple ways to
impute the missing data?

7. Which variables are categorical? Convert these variables to dummy
variables using a convenient function or using your own approach.

Run and interpret the model. For convenience, and to avoid long formula
strings, you can use the formula notation annual_income_ppp ~ . which means
‘regress annual_income against everything else’ . You can also remove fields this
way, for example annual_income_ppp ~ . - family_size.

8. Determine what variables are significant predictors of annual in-
come and what is the effect of each on the outcome.

9. Determine the overall fit of the model.
10. Do some simple analysis on the residuals of the model to determine

if the model is safe to interpret.

4.7 Learning exercises 99

11. Experiment with improving the model fit through possible interac-
tion terms or non-linear extensions.

12. Comment on your results. Did anything in the results surprise you?
If so, what might be possible explanations for this.

13. Explain why you would or would not be comfortable using a model
like this in a predictive setting—for example to help employers de-
termine the right pay for employees.

http://taylorandfrancis.com

5
Binomial Logistic Regression for Binary
Outcomes

In the previous chapter we looked at how to explain outcomes that have
continuous scale, such as quantity, money, height or weight. While there are a
number of typical outcomes of this type in the people analytics domain, they
are not the most common form of outcomes that are typically modeled. Much
more common are situations where the outcome of interest takes the form of
a limited set of classes. Binary (two class) problems are very common. Hiring,
promotion and attrition are often modeled as binary outcomes: for example
‘Promoted’ or ‘Not promoted.’ Multi-class outcomes like performance ratings
on an ordinal scale, or survey responses on a Likert scale are often converted
to binary outcomes by dividing the ratings into two groups, for example ‘High’
and ‘Not High.’

In any situation where our outcome is binary, we are effectively working with
likelihoods. These are not generally linear in nature, and so we no longer have
the comfort of our inputs being directly linearly related to our outcome. There-
fore direct linear regression methods such as Ordinary Least Squares regression
are not well suited to outcomes of this type. Instead, linear relationships can
be inferred on transformations of the outcome variable, which gives us a path
to building interpretable models. Hence, binomial logistic regression is said
to be in a class of generalized linear models or GLMs. Understanding logistic
regression and using it reliably in practice is not straightforward, but it is an
invaluable skill to have in the people analytics domain. The mathematics of
this chapter is a little more involved but worth the time investment in order
to build a competent understanding of how to interpret these types of models.

DOI: 10.1201/9781003194156-5 101

https://doi.org/10.1201/9781003194156-5

102 5 Binomial Logistic Regression for Binary Outcomes

5.1 When to use it

5.1.1 Origins and intuition of binomial logistic regression

The logistic function was first introduced by the Belgian mathematician Pierre
François Verhulst in the mid-1800s as a tool for modeling population growth
for humans, animals and certain species of plants and fruits. By this time, it
was generally accepted that population growth could not continue exponen-
tially forever, and that there were environmental and resource limits which
place a maximum limit on the size of a population. The formula for Verhulst’s
function was:

𝑦 = 𝐿
1 + 𝑒−𝑘(𝑥−𝑥0)

where 𝑒 is the exponential constant, 𝑥0 is the value of 𝑥 at the midpoint, 𝐿
is the maximum value of 𝑦 (known as the ‘carrying capacity’) and 𝑘 is the
maximum gradient of the curve.

The logistic function, as shown in Figure 5.1, was felt to accurately capture
the theorized stages of population growth, with slower growth in the initial
stage, moving to exponential growth during the intermediate stage and then
to slower growth as the population approaches its carrying capacity.

FIGURE 5.1: Verhulst’s logistic function modeled both the exponential na-
ture and the natural limit of population growth

In the early 20th century, starting with applications in economics and in chem-
istry, the logistic function was adopted in a wide array of fields as a useful tool
for modeling phenomena. In statistics, it was observed that the logistic func-
tion has a similar S-shape (or sigmoid) to a cumulative normal distribution of

5.1 When to use it 103

probability, as depicted in Figure 5.21, where the 𝑥 scale represents standard
deviations around a mean. As we will learn, the logistic function gives rise to
a mathematical model where the coefficients are easily interpreted in terms of
likelihood of the outcome. Unsurprisingly, therefore, the logistic model soon
became a common approach to modeling probabilistic phenomena.

0.00

0.25

0.50

0.75

1.00

-5.0 -2.5 0.0 2.5 5.0
x

P
(c

um
ul

at
ive

)

FIGURE 5.2: The logistic function (blue dashed line) is very similar to a
cumulative normal distribution (red solid line) but easier to interpret

5.1.2 Use cases for binomial logistic regression

Binomial logistic regression can be used when the outcome of interest is binary
or dichotomous in nature. That is, it takes one of two values. For example,
one or zero, true or false, yes or no. These classes are commonly described as
‘positive’ and ‘negative’ classes. There is an underlying assumption that the
cumulative probability of the outcome takes a shape similar to a cumulative
normal distribution.

Here are some example questions that could be approached using binomial
logistic regression:

• Given a set of data about sales managers in an organization, including per-
formance against targets, team size, tenure in the organization and other

1The logistic function plotted in Figure 5.2 takes the simple form 𝑦 = 1
1+𝑒−𝑥 .

104 5 Binomial Logistic Regression for Binary Outcomes

factors, what influence do these factors have on the likelihood of the indi-
vidual receiving a high performance rating?

• Given a set of demographic, income and location data, what influence does
each have on the likelihood of an individual voting in an election?

• Given a set of statistics about the in-game activity of soccer players, what
relationship does each statistic have with the likelihood of a player scoring
a goal?

5.1.3 Walkthrough example

You are an analyst for a large company consisting of regional sales teams across
the country. Twice every year, this company promotes some of its salespeople.
Promotion is at the discretion of the head of each regional sales team, taking
into consideration financial performance, customer satisfaction ratings, recent
performance ratings and personal judgment.

You are asked by the management of the company to conduct an analysis
to determine how the factors of financial performance, customer ratings and
performance ratings influence the likelihood of a given salesperson being pro-
moted. You are provided with a data set containing data for the last three
years of salespeople considered for promotion. The salespeople data set con-
tains the following fields:

• promoted: A binary value indicating 1 if the individual was promoted and 0
if not

• sales: the sales (in thousands of dollars) attributed to the individual in the
period of the promotion

• customer_rate: the average satisfaction rating from a survey of the individ-
ual’s customers during the promotion period

• performance: the most recent performance rating prior to promotion, from
1 (lowest) to 4 (highest)

Let’s take a quick look at the data.

if needed, download salespeople data
url <- "http://peopleanalytics-regression-book.org/data/salespeople.csv"
salespeople <- read.csv(url)

look at the first few rows of data
head(salespeople)

5.1 When to use it 105

promoted sales customer_rate performance
1 0 594 3.94 2
2 0 446 4.06 3
3 1 674 3.83 4
4 0 525 3.62 2
5 1 657 4.40 3
6 1 918 4.54 2

The data looks as expected. Let’s get a summary of the data.

summary(salespeople)

promoted sales customer_rate performance
Min. :0.0000 Min. :151.0 Min. :1.000 Min. :1.0
1st Qu.:0.0000 1st Qu.:389.2 1st Qu.:3.000 1st Qu.:2.0
Median :0.0000 Median :475.0 Median :3.620 Median :3.0
Mean :0.3219 Mean :527.0 Mean :3.608 Mean :2.5
3rd Qu.:1.0000 3rd Qu.:667.2 3rd Qu.:4.290 3rd Qu.:3.0
Max. :1.0000 Max. :945.0 Max. :5.000 Max. :4.0
NA's :1 NA's :1 NA's :1

First we see a small number of missing values, and we should remove those
observations. We see that about a third of individuals were promoted, that
sales ranged from $151k to $945k, that as expected the average satisfaction
ratings range from 1 to 5, and finally we see four performance ratings, although
the performance categories are numeric when they should be an ordered factor,
and promoted is numeric when it should be categorical. Let’s convert these,
and then let’s do a pairplot to get a quick view on some possible underlying
relationships, as in Figure 5.3.

library(GGally)

remove NAs
salespeople <- salespeople[complete.cases(salespeople),]

convert performance to ordered factor and promoted to categorical
salespeople$performance <- ordered(salespeople$performance,

levels = 1:4)
salespeople$promoted <- as.factor(salespeople$promoted)

generate pairplot
GGally::ggpairs(salespeople)

106 5 Binomial Logistic Regression for Binary Outcomes

Corr:

0.338***

promoted sales customer_rate performance
prom

oted
sales

custom
er_rate

perform
ance

0 1 250 500 750 1000 1 2 3 4 5 1 2 3 4

0
50

100
150
200

250

500

750

1000

1
2
3
4
5

020406080

020406080

020406080

020406080

FIGURE 5.3: Pairplot for the salespeople data set

We can see from this pairplot that there are clearly higher sales for those who
are promoted versus those who are not. We also see a moderate relationship
between customer rating and sales, which is intuitive (if the customer doesn’t
think much of you, sales wouldn’t likely be very high).

So we can see that some relationships with our outcome may exist here, but
it’s not clear how to tease them out and quantify them relative to each other.
Let’s explore how binomial logistic regression can help us do this.

5.2 Modeling probabilistic outcomes using a logistic
function

Imagine that you have an outcome event 𝑦 which either occurs or does not
occur. The probability of 𝑦 occurring, or 𝑃(𝑦 = 1), obviously takes a value
between 0 and 1. Now imagine that some input variable 𝑥 has a positive effect
on the probability of the event occurring. Then you would naturally expect
𝑃 (𝑦 = 1) to increase as 𝑥 increases.

In our salespeople data set, let’s plot our promotion outcome against the
sales input. This can be seen in Figure 5.4.

5.2 Modeling probabilistic outcomes using a logistic function 107

0

1

250 500 750
sales

pr
om

ot
ed

FIGURE 5.4: Plot of promotion against sales in the salespeople data set

It’s clear that promotion is more likely with higher sales levels. As we move
along the 𝑥 axis from left to right and gradually include more and more
individuals with higher sales, we know that the probability of promotion is
gradually increasing overall. We could try to model this probability using our
logistic function, which we learned about in Section 5.1.1. For example, let’s
plot the logistic function

𝑃(𝑦 = 1) = 1
1 + 𝑒−𝑘(𝑥−𝑥0)

on this data, where we set 𝑥0 to the mean of sales and 𝑘 to be some maximum
gradient value. In Figure 5.5 we can see these logistic functions for different
values of 𝑘. All of these seem to reflect the pattern we are observing to some
extent, but how do we determine the best-fitting logistic function?

5.2.1 Deriving the concept of log odds

Let’s look more carefully at the index of the exponential constant 𝑒 in the
denominator of our logistic function. Note that, because 𝑥0 is a constant, we
have:

−𝑘(𝑥 − 𝑥0) = −(−𝑘𝑥0 + 𝑘𝑥) = −(𝛽0 + 𝛽1𝑥)
where 𝛽0 = −𝑘𝑥0 and 𝛽1 = 𝑘. Therefore,

108 5 Binomial Logistic Regression for Binary Outcomes

0.00

0.25

0.50

0.75

1.00

250 500 750
sales

pr
om

ot
ed

FIGURE 5.5: Overlaying logistic functions with various gradients onto pre-
vious plot

𝑃(𝑦 = 1) = 1
1 + 𝑒−(𝛽0+𝛽1𝑥)

This equation makes intuitive sense. As the value of 𝑥 increases, the value
𝑒−(𝛽0+𝛽1𝑥) gets smaller and smaller towards zero, and thus 𝑃(𝑦 = 1) ap-
proaches its theoretical maximum value of 1. As the value of 𝑥 decreases
towards zero, we see that the value of 𝑃(𝑦 = 1) approaches a minimum value
of 1

1+𝑒−𝛽0 . Referring back to our salespeople example, we can thus see that 𝛽0
helps determine the baseline probability of promotion assuming no sales at all.
If 𝛽0 has an extremely negative value, this baseline probability will approach
its theoretical minimum of zero.

Let’s formalize the role of 𝛽0 and 𝛽1 in the likelihood of a positive outcome.
We know that for any binary event 𝑦, 𝑃 (𝑦 = 0) is equal to 1 − 𝑃(𝑦 = 1), so

𝑃(𝑦 = 0) = 1 − 1
1 + 𝑒−(𝛽0+𝛽1𝑥)

= 1 + 𝑒−(𝛽0+𝛽1𝑥) − 1
1 + 𝑒−(𝛽0+𝛽1𝑥)

= 𝑒−(𝛽0+𝛽1𝑥)

1 + 𝑒−(𝛽0+𝛽1𝑥)

Putting these together, we find that

5.2 Modeling probabilistic outcomes using a logistic function 109

𝑃 (𝑦 = 1)
𝑃 (𝑦 = 0) =

1
1+𝑒−(𝛽0+𝛽1𝑥)

𝑒−(𝛽0+𝛽1𝑥)

1+𝑒−(𝛽0+𝛽1𝑥)

= 1
𝑒−(𝛽0+𝛽1𝑥)

= 𝑒𝛽0+𝛽1𝑥

or alternatively, if we apply the natural logarithm to both sides

ln (𝑃 (𝑦 = 1)
𝑃 (𝑦 = 0)) = 𝛽0 + 𝛽1𝑥

The right-hand side should look familiar from the previous chapter on linear
regression, meaning there is something here we can model linearly. But what
is the left-hand side?

𝑃 (𝑦 = 1) is the probability that the event will occur, while 𝑃 (𝑦 = 0) is the
probability that the event will not occur. You may be familiar from sports like
horse racing or other gambling situations that the ratio of these two represents
the odds of an event. For example, if a given horse has odds of 1:4, this means
that there is a 20% probability they will win and an 80% probability they will
not2.

Therefore we can conclude that the natural logarithm of the odds of 𝑦—usually
termed the log odds of 𝑦—is linear in 𝑥, and therefore we can model the log
odds of 𝑦 using similar linear regression methods to those studied in Chapter
43.

5.2.2 Modeling the log odds and interpreting the coefficients

Let’s take our simple case of regressing the promoted outcome against sales.
We use a standard binomial GLM function and our standard formula notation
which we learned in the previous chapter.

run a binomial model
sales_model <- glm(formula = promoted ~ sales,

data = salespeople, family = "binomial")

view the coefficients
sales_model$coefficients

2Often in sports the odds are expressed in the reverse order, but the concept is the same.
3In this case, a more general form of the Ordinary Least Squares procedure is used to fit

the model, known as maximum likelihood estimation.

110 5 Binomial Logistic Regression for Binary Outcomes

(Intercept) sales
-21.77642020 0.03675848

We can interpret the coefficients as follows:

1. The (Intercept) coefficient is the value of the log odds with zero
input value of 𝑥—it is the log odds of promotion if you made no
sales.

2. The sales coefficient represents the increase in the log odds of pro-
motion associated with each unit increase in sales.

We can convert these coefficients from log odds to odds by applying the expo-
nent function, to return to the identity we had previously

𝑃(𝑦 = 1)
𝑃(𝑦 = 0) = 𝑒𝛽0+𝛽1𝑥 = 𝑒𝛽0(𝑒𝛽1)𝑥

From this, we can interpret that 𝑒𝛽0 represents the base odds of promotion
assuming no sales, and that for every additional unit sales, those base odds
are multiplied by 𝑒𝛽1 . Given this multiplicative effect that 𝑒𝛽1 has on the odds,
it is known as an odds ratio.

convert log odds to base odds and odds ratio
exp(sales_model$coefficients)

(Intercept) sales
3.488357e-10 1.037442e+00

So we can see that the base odds of promotion with zero sales is very close
to zero, which makes sense. Note that odds can only be precisely zero in a
situation where it is impossible to be in the positive class (that is, nobody
gets promoted). We can also see that each unit (that is, every $1000) of sales
multiplies the base odds by approximately 1.04—in other words, it increases
the odds of promotion by 4%.

5.2.3 Odds versus probability

It is worth spending a little time understanding the concept of odds and
how it relates to probability. It is extremely common for these two terms to
be used synonymously, and this can lead to serious misunderstandings when
interpreting a logistic regression model.

5.2 Modeling probabilistic outcomes using a logistic function 111

If a certain event has a probability of 0.1, then this means that its odds are
1:9, or 0.111. If the probability is 0.5, then the odds are 1, if the probability
is 0.9, then the odds are 9, and if the probability is 0.99, the odds are 99.
As we approach a probability of 1, the odds become exponentially large, as
illustrated in Figure 5.6:

0

25

50

75

100

0.00 0.25 0.50 0.75 1.00
Probability

O
dd

s

FIGURE 5.6: Odds plotted against probability

The consequence of this is that a given increase in odds can have a different
effect on probability depending on what the original probability was in the
first place. If the probability was already quite low, for example 0.1, then
a 4% increase in odds translates to odds of 0.116, which translates to a new
probability of 0.103586, representing an increase in probability of 3.59%, which
is very close to the increase in odds. If the probability was already high, say
0.9, then a 4% increase in odds translates to odds of 9.36, which translates to
a new probability of 0.903475 representing an increase in probability of 0.39%,
which is very different from the increase in odds. Figure 5.7 shows the impact
of a 4% increase in odds according to the original probability of the event.

We can see that the closer the base probability is to zero, the similar the
effect of the increase on both odds and on probability. However, the higher
the probability of the event, the less impact the increase in odds has. In any
case, it’s useful to remember the formulas for converting odds to probability
and vice versa. If 𝑂 represents odds and 𝑃 represents probability then we
have:

112 5 Binomial Logistic Regression for Binary Outcomes

0.00

0.01

0.02

0.03

0.04

0.00 0.25 0.50 0.75 1.00
Original probability

In
cr

ea
se

 in
 p

ro
ba

bi
lit

y

FIGURE 5.7: Effect of 4% increase in odds plotted against original proba-
bility

𝑂 = 𝑃
1 − 𝑃

𝑃 = 𝑂
1 + 𝑂

5.3 Running a multivariate binomial logistic regression
model

The derivations in the previous section extend to multivariate data. Let 𝑦 be
a dichotomous outcome, and let 𝑥1, 𝑥2, … , 𝑥𝑝 be our input variables. Then

ln (𝑃(𝑦 = 1)
𝑃(𝑦 = 0)) = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑝𝑥𝑝

for coefficients 𝛽0, 𝛽1, … , 𝛽𝑝. As before:

• 𝛽0 represents the log odds of our outcome when all inputs are zero
• Each 𝛽𝑖 represents the increase in the log odds of our outcome associated

with a unit change in 𝑥𝑖, assuming no change in other inputs.

5.3 Running a multivariate binomial logistic regression model 113

Applying an exponent as before, we have

𝑃 (𝑦 = 1)
𝑃 (𝑦 = 0) = 𝑒𝛽0+𝛽1𝑥1+𝛽2𝑥2+⋯+𝛽𝑝𝑥𝑝

= 𝑒𝛽0(𝑒𝛽1)𝑥1(𝑒𝛽2)𝑥2 … (𝑒𝛽𝑝)𝑥𝑝

Therefore we can conclude that:

• 𝑒𝛽0 represents the odds of the outcome when all inputs are zero.
• Each 𝑒𝛽𝑖 represents the odds ratio associated with a unit increase in 𝑥𝑖 as-

suming no change in the other inputs (that is, a unit increase in 𝑥𝑖 multiplies
the odds of our outcome by 𝑒𝛽𝑖).

Let’s put this into practice.

5.3.1 Running and interpreting a multivariate binomial logis-
tic regression model

Let’s use a binomial logistic regression model to understand how each of the
three inputs in our salespeople data set influence the likelihood of promotion.

First, as we learned previously, it is good practice to convert the categorical
performance variable to a dummy variable4.

library(dummies)

convert performance to dummy
perf_dummies <- dummies::dummy("performance", data = salespeople)

replace in salespeople dataframe
salespeople_dummies <- cbind(
salespeople[c("promoted", "sales", "customer_rate")],
perf_dummies

)

check it worked
head(salespeople_dummies)

4Note that most standard modeling functions have a built-in capability to deal with
categorical variables, meaning that it’s often not necessary to explicitly construct dummies.
However, it is shown here for completion sake. You may wish to try running the subsequent
code without explicitly constructing dummies, but note that constructing your own dummies
gives you greater control over how they are labeled in any modeling output.

114 5 Binomial Logistic Regression for Binary Outcomes

promoted sales customer_rate performance1 performance2 performance3 performance4
1 0 594 3.94 0 1 0 0
2 0 446 4.06 0 0 1 0
3 1 674 3.83 0 0 0 1
4 0 525 3.62 0 1 0 0
5 1 657 4.40 0 0 1 0
6 1 918 4.54 0 1 0 0

Now we can run our model (using the formula promoted ~ . to mean regressing
promoted against everything else) and view our coefficients.

run binomial glm
full_model <- glm(formula = "promoted ~ .",

family = "binomial",
data = salespeople_dummies)

get coefficient summary
(coefs <- summary(full_model)$coefficients)

Estimate Std. Error z value Pr(>|z|)
(Intercept) -19.12443855 3.501115197 -5.46238483 4.697803e-08
sales 0.04012425 0.006576429 6.10122119 1.052611e-09
customer_rate -1.11213130 0.482681585 -2.30406822 2.121881e-02
performance1 -0.73449340 1.071963758 -0.68518492 4.932272e-01
performance2 -0.47149387 0.933503552 -0.50507989 6.135027e-01
performance3 -0.04953888 0.911614825 -0.05434189 9.566628e-01

Note how only three of the performance dummies have displayed. This is be-
cause everyone is in one of the four performance categories, so the model is
using performance4 as the reference case. We can interpret each performance
coefficient as the effect of a move to that performance category from perfor-
mance4. We can already see from the last column of our coefficient summary—
the coefficient p-values—that only sales and customer_rate meet the signifi-
cance threshold of less than 0.05. Interestingly, it appears from the Estimate
column that customer_rate has a negative effect on the log odds of promotion.
For convenience, we can add an extra column to our coefficient summary to
create the exponents of our estimated coefficients so that we can see the odds
ratios. We can also remove columns that are less useful to us if we wish.

create coefficient table with estimates, p-values and odds ratios
(full_coefs <- cbind(coefs[,c("Estimate", "Pr(>|z|)")],

odds_ratio = exp(full_model$coefficients)))

5.3 Running a multivariate binomial logistic regression model 115

Estimate Pr(>|z|) odds_ratio
(Intercept) -19.12443855 4.697803e-08 4.947227e-09
sales 0.04012425 1.052611e-09 1.040940e+00
customer_rate -1.11213130 2.121881e-02 3.288573e-01
performance1 -0.73449340 4.932272e-01 4.797484e-01
performance2 -0.47149387 6.135027e-01 6.240693e-01
performance3 -0.04953888 9.566628e-01 9.516682e-01

Now we can interpret our model as follows:

• All else being equal, sales have a significant positive effect on the likelihood
of promotion, with each additional thousand dollars of sales increasing the
odds of promotion by 4%

• All else being equal, customer ratings have a significant negative effect on
the likelihood of promotion, with one full rating higher associated with 67%
lower odds of promotion

• All else being equal, performance ratings have no significant effect on the
likelihood of promotion

The second conclusion may appear counter-intuitive, but remember from our
pairplot in Section 5.1.3 that there is already moderate correlation between
sales and customer ratings, and this model will be controlling for that relation-
ship. Recall that our odds ratios act assuming all other variables are the same.
Therefore, if two individuals have the same sales and performance ratings,
the one with the lower customer rating is more likely to have been promoted.
Similarly, if two individuals have the same level of sales and the same cus-
tomer rating, their performance rating will have no significant bearing on the
likelihood of promotion.

Many analysts will feel uncomfortable with stating these conclusions with too
much precision, and therefore exponent confidence intervals can be calculated
to provide a range for the odds ratios.

exp(confint(full_model))

2.5 % 97.5 %
(Intercept) 1.505306e-12 1.750716e-06
sales 1.029762e+00 1.057214e+00
customer_rate 1.141645e-01 7.793018e-01
performance1 5.345231e-02 3.824309e+00
performance2 9.675452e-02 3.958066e+00
performance3 1.591405e-01 5.976988e+00
performance4 NA NA

116 5 Binomial Logistic Regression for Binary Outcomes

Therefore we can say that—all else being equal—every additional unit of sales
increases the odds of promotion by between 3.0% and 5.7%, and every addi-
tional point in customer rating decreases the odds of promotion by between
22% and 89%.

Similar to other regression models, the unit scale needs to be taken into consid-
eration during interpretation. On first sight, a decrease of up to 89% in odds
seems a lot more important than an increase of up to 5.7% in odds. However,
the increase of up to 5.7% is for one unit ($1000) in many thousands of sales
units, and over 10 or 100 additional units can have a substantial compound
effect on odds of promotion. The decrease of up to 89% is on a full customer
rating point on a scale of only 4 full points.

5.3.2 Understanding the fit and goodness-of-fit of a binomial
logistic regression model

Understanding the fit of a binomial logistic regression model is not straight-
forward and is sometimes controversial. Before we discuss this, let’s simplify
our model based on our learning that the performance data has no significant
effect on the outcome.

simplify model
simpler_model <- glm(formula = promoted ~ sales + customer_rate,

family = "binomial",
data = salespeople)

As in the previous chapter, again we have the luxury of a three-dimensional
model, so we can visualize it in Figure 5.8, revealing a 3D sigmoid curve
which ‘twists’ to reflect the relative influence of sales and customer_rate on
the outcome.

5.3 Running a multivariate binomial logistic regression model 117

FIGURE 5.8: 3D visualization of the fitted simpler_model against the sales-
people data

Now let’s look at the summary of our simpler_model.

summary(simpler_model)

##
Call:
glm(formula = promoted ~ sales + customer_rate, family = "binomial",
data = salespeople)
##
Deviance Residuals:
Min 1Q Median 3Q Max
-2.02984 -0.09256 -0.02070 0.00874 3.06380
##
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -19.517689 3.346762 -5.832 5.48e-09 ***
sales 0.040389 0.006525 6.190 6.03e-10 ***
customer_rate -1.122064 0.466958 -2.403 0.0163 *

118 5 Binomial Logistic Regression for Binary Outcomes

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
(Dispersion parameter for binomial family taken to be 1)
##
Null deviance: 440.303 on 349 degrees of freedom
Residual deviance: 65.131 on 347 degrees of freedom
AIC: 71.131
##
Number of Fisher Scoring iterations: 8

Note that, unlike what we saw for linear regression in Section 4.3.3, our sum-
mary does not provide a statistic on overall model fit or goodness-of-fit. The
main reason for this is that there is no clear unified point of view in the statis-
tics community on a single appropriate measure for model fit in the case of
logistic regression. Nevertheless, a number of options are available to analysts
for estimating fit and goodness-of-fit for these models.

Pseudo-𝑅2 measures are attempts to estimate the amount of variance in the
outcome that is explained by the fitted model, analogous to the 𝑅2 in linear
regression. There are numerous variants of pseudo-𝑅2 with some of the most
common listed here:

• McFadden’s 𝑅2 works by comparing the likelihood function of the fitted
model with that of a random model and using this to estimate the explained
variance in the outcome.

• Cox and Snell’s 𝑅2 works by applying a ‘sum of squares’ analogy to the
likelihood functions to align more closely with the precise methodology for
calculating 𝑅2 in linear regression. However, this usually means that the
maximum value is less than 1 and in certain circumstances substantially
less than 1, which can be problematic and unintuitive for an 𝑅2.

• Nagelkerke’s 𝑅2 resolves the issue with the upper bound for Cox and Snell
by dividing Cox and Snell’s 𝑅2 by its upper bound. This restores an intu-
itive scale with a maximum of 1, but is considered somewhat arbitrary with
limited theoretical foundation.

• Tjur’s 𝑅2 is a more recent and simpler concept. It is defined as simply
the absolute difference between the predicted probabilities of the positive
observations and those of the negative observations.

Standard modeling functions generally do not offer the calculation of pseudo-
𝑅2 as standard, but numerous methods are available for their calculation. For
example:

5.3 Running a multivariate binomial logistic regression model 119

library(DescTools)
DescTools::PseudoR2(
simpler_model,
which = c("McFadden", "CoxSnell", "Nagelkerke", "Tjur")

)

McFadden CoxSnell Nagelkerke Tjur
0.8520759 0.6576490 0.9187858 0.8784834

We see that the Cox and Snell variant is notably lower than the other estimates,
which is consistent with the known issues with its upper bound. However, the
other estimates are reasonably aligned and suggest a strong fit.

Goodness-of-fit tests for logistic regression models compare the predictions
to the observed outcome and test the null hypothesis that they are similar.
This means that, unlike in linear regression, a low p-value indicates a poor
fit. One commonly used method is the Hosmer-Lemeshow test, which divides
the observations into a number of groups (usually 10) according to their fit-
ted probabilities, calculates the proportion of each group that is positive and
then compares this to the expected proportions based on the model prediction
using a Chi-squared test. However, this method has limitations. It is partic-
ularly problematic for situations where there is a low sample size and can
return highly varied results based on the number of groups used. It is there-
fore recommended to use a range of goodness-of-fit tests, and not rely entirely
on any one specific approach.

In R, the LogisticDx package offers a range of diagnostic tools for logistic
regression models, and is recommended for exploration. Here is an example
using the gof() function for assessing goodness-of-fit.

library(LogisticDx)

get range of goodness-of-fit diagnostics
simpler_model_diagnostics <- LogisticDx::gof(simpler_model,

plotROC = FALSE)

returns a list
names(simpler_model_diagnostics)

[1] "ct" "chiSq" "ctHL" "gof" "R2" "auc"

The gof object in this list provides a range of variants of goodness-of-fit statis-
tics.

120 5 Binomial Logistic Regression for Binary Outcomes

in our case we are interested in goodness-of-fit statistics
simpler_model_diagnostics$gof

test stat val df pVal
1: HL chiSq 3.44576058 8 0.903358158
2: mHL F 2.74709957 8 0.005971045
3: OsRo Z -0.02415249 NA 0.980730971
4: SstPgeq0.5 Z 0.88656856 NA 0.375311227
5: SstPl0.5 Z 0.96819352 NA 0.332947728
6: SstBoth chiSq 1.72340251 2 0.422442787
7: SllPgeq0.5 chiSq 1.85473814 1 0.173233325
8: SllPl0.5 chiSq 0.68570870 1 0.407627859
9: SllBoth chiSq 1.86640617 2 0.393291943

This confirms that almost all tests, including the Hosmer-Lemeshow test,
which is the first in the list, suggest a fit for our model.

Various measures of predictive accuracy can also be used to assess a binomial
logistic regression model in a predictive context, such as precision, recall and
ROC-curve analysis. These are particularly suited for implementations of logis-
tic regression models as predictive classifiers in a Machine Learning context, a
topic which is outside the scope of this book. However, a recommended source
for a deeper treatment of goodness-of-fit tests for logistic regression models is
Hosmer, Lemeshow, and Sturdivant (2013).

5.3.3 Model parsimony

We saw that in both our linear regression and our logistic regression approach,
we decided to drop variables from our model when we determined that they
had no significant effect on the outcome. The principle of Occam’s Razor
states that—all else being equal—the simplest explanation is the best. In
this sense, a model that contains information that does not contribute to its
primary inference objective is more complex than it needs to be. Such a model
increases the communication burden in explaining its results to others, with
no notable analytic benefit in return.

Parsimony describes the concept of being careful with resources or with infor-
mation. A model could be described as more parsimonious if it can achieve
the same (or very close to the same) fit with a smaller number of inputs. The
Akaike Information Criterion or AIC is a measure of model parsimony that
is computed for log-likelihood models like logistic regression models, with a
lower AIC indicating a more parsimonious model. AIC is often calculated as

5.3 Running a multivariate binomial logistic regression model 121

standard in summary reports of logistic regression models but can also be
calculated independently. Let’s compare the different iterations of our model
in this chapter using AIC.

sales only model
AIC(sales_model)

[1] 76.49508

sales and customer rating model
AIC(simpler_model)

[1] 71.13145

model with all inputs
AIC(full_model)

[1] 76.37433

We can see that the model which is limited to our two significant inputs—
sales and customer rating—is determined to be the most parsimonious model
according to the AIC. Note that the AIC should not be used to interpret
model quality or confidence—it is possible that the lowest AIC might still be
a very poor fit.

Model parsimony becomes a substantial concern when there is a large num-
ber of input variables. As a general rule, the more input variables there are
in a model the greater the chance that the model will be difficult to interpret
clearly, and the greater the risk of measurement problems, such as multi-
collinearity. Analysts who are eager to please their customers, clients, profes-
sors or bosses can easily be tempted to think up new potential inputs to their
model, often derived mathematically from measures that are already inputs in
the model. Before long the model is too complex, and in extreme cases there
are more inputs than there are observations. The primary way to manage
model complexity is to exercise caution in selecting model inputs. When large
numbers of inputs are unavoidable, coefficient regularization methods such as
LASSO regression can help with model parsimony.

122 5 Binomial Logistic Regression for Binary Outcomes

5.4 Other considerations in binomial logistic regression

To predict from new data, just use the predict() function as in the previous
chapter. This function recognizes the type of model being used—in this case
a generalized linear model—and adjusts its prediction approach accordingly.
In particular, if you want to return the probability of the new observations
being promoted, you need to use type = "response" as an argument.

define new observations
(new_data <- data.frame(sales = c(420, 510, 710),

customer_rate = c(3.4, 2.3, 4.2)))

sales customer_rate
1 420 3.4
2 510 2.3
3 710 4.2

predict probability of promotion
predict(simpler_model, new_data, type = "response")

1 2 3
0.00171007 0.18238565 0.98840506

Many of the principles covered in the previous chapter on linear regression are
equally important in logistic regression. For example, input variables should
be managed in a similar way. Collinearity and multicollinearity should be of
concern. Interaction of input variables can be modeled. For the most part,
analysts should be aware of the fundamental mathematical transformations
which take place in a logistic regression model when they consider some of
these issues (another reason to ensure that the mathematics covered earlier
in this chapter is well understood). For example, while coefficients in linear
regression have a direct additive impact on 𝑦, in logistic regression they have
a direct additive impact on the log odds of 𝑦, or alternatively their exponents
have a direct multiplicative impact on the odds of 𝑦. Therefore coefficient
overestimation such as that which can occur when collinearity is not managed
can result in inferences that could substantially overstate the importance or
effect of input variables.

5.4 Other considerations in binomial logistic regression 123

Because of the binary nature of our outcome variable, the residuals of a lo-
gistic regression model have limited direct application to the problem being
studied. In practical contexts the residuals of logistic regression models are
rarely examined, but they can be useful in identifying outliers or particularly
influential observations and in assessing goodness-of-fit. When residuals are
examined, they need to be transformed in order to be analyzed appropri-
ately. For example, the Pearson residual is a standardized form of residual
from logistic regression which can be expected to have a normal distribution
over large-enough samples. We can see in Figure 5.9 that this is the case for
our simpler_model, but that there are a small number of substantial under-
estimates in our model. A good source of further learning on diagnostics of
logistic regression models is Menard (2010).

d <- density(residuals(simpler_model, "pearson"))
plot(d, main= "")

-2 0 2 4 6 8 10

0
2

4
6

N = 350 Bandwidth = 0.01492

D
en

si
ty

FIGURE 5.9: Distribution of Pearson residuals in simpler_model

124 5 Binomial Logistic Regression for Binary Outcomes

5.5 Learning exercises

5.5.1 Discussion questions

1. Draw the shape of a logistic function. Describe the three population
growth phases it was originally intended to model.

2. Explain why the logistic function is useful to statisticians in model-
ing.

3. In the formula for the logistic function in Section 5.1.1, what might
be a common value for 𝐿 in probabilistic applications? Why?

4. What types of problems are suitable for logistic regression model-
ing?

5. Can you think of some modeling scenarios in your work or studies
that could use a logistic regression approach?

6. Explain the concept of odds. How do odds differ from probability?
How do odds change as probability increases?

7. Complete the following:

a. If an event has a 1% probability of occurring, a 10% increase in
odds results in an almost __% increase in probability.

b. If an event has a 99% probability of occurring, a 10% increase in
odds results in an almost __% increase in probability.

8. Describe how the coefficients of a logistic regression model affect
the fitted outcome. If 𝛽 is a coefficient estimate, how is the odds
ratio associated with 𝛽 calculated and what does it mean?

9. What are some of the options for determining the fit of a binomial
logistic regression model?

10. Describe the concept of model parsimony. What measure is com-
monly used to determine the most parsimonious logistic regression
model?

5.5.2 Data exercises

A nature preservation charity has asked you to analyze some data to help
them understand the features of those members of the public who donated in a
given month. Load the charity_donation data set via the peopleanalyticsdata
package or download it from the internet5. It contains the following data:

5http://peopleanalytics-regression-book.org/data/charity_donation.csv

http://peopleanalytics-regression-book.org/

5.5 Learning exercises 125

• n_donations: The total number of times the individual donated previous to
the month being studied.

• total_donations: The total amount of money donated by the individual
previous to the month being studied

• time_donating: The number of months between the first donation and the
month being studied

• recent_donation: Whether or not the individual donated in the month being
studied

• last_donation: The number of months between the most recent previous
donation and the month being studied

• gender: The gender of the individual
• reside: Whether the person resides in an Urban or Rural Domestic location

or Overseas
• age: The age of the individual

1. View the data and obtain statistical summaries. Ensure data types
are appropriate and there is no missing data. Determine the out-
come and input variables.

2. Using a pairplot or by plotting or correlating selected fields, try to
hypothesize which variables may be significant in explaining who
recently donated.

3. Run a binomial logistic regression model using all input fields. Deter-
mine which input variables have a significant effect on the outcome
and the direction of that effect.

4. Calculate the odds ratios for the significant variables and explain
their impact on the outcome.

5. Check for collinearity or multicollinearity in your model using meth-
ods from previous chapters.

6. Experiment with model parsimony by reducing input variables that
do not have a significant impact on the outcome. Decide on the
most parsimonious model.

7. Calculate a variety of Pseudo-𝑅2 variants for your model. How
would you explain these to someone with no statistics expertise?

8. Report the conclusions of your modeling exercise to the charity by
writing a simple explanation that assumes no knowledge of statis-
tics.

9. Extension: Using a variety of methods of your choice, test the
hypothesis that your model fits the data. How conclusive are your
tests?

http://taylorandfrancis.com

6
Multinomial Logistic Regression for Nominal
Category Outcomes

In the previous chapter we looked at how to model a binary or dichotomous
outcome using a logistic function. In this chapter we look at how to extend
this to the case when the outcome has a number of categories that do not
have any order to them. When an outcome has this nominal categorical form,
it does not have a sense of direction. There is no ‘better’ or ‘worse’ , no ‘higher’
or ‘lower’ , there is only ‘different’ .

6.1 When to use it

6.1.1 Intuition for multinomial logistic regression

A binary or dichotomous outcome like we studied in the previous chapter is
already in fact a nominal outcome with two categories, so in principle we
already have the basic technology with which to study this problem. That
said, the way we approach the problem can differ according to the types of
inferences we wish to make.

If we only wish to make inferences about the choice of each specific category—
what drives whether an observation is in Category A versus the others, or
Category B versus the others—then we have the option of running separate
binomial logistic regression models on a ‘one versus the rest’ basis. In this case
we can refine our model differently for each category, eliminating variables
that are not significant in determining membership of that category. This
could potentially lead to models being defined differently for different target
outcome categories. Notably, there will be no common comparison category
between these models. This is sometimes called a stratified approach.

However, in many studies there is a need for a ‘reference’ category to better
understand the relative odds of category membership. For example, in clinical
settings the relative risk factors for different clinical outcomes can only be
understood relative to a reference (usually that of the ‘most healthy’ or ‘most

DOI: 10.1201/9781003194156-6 127

https://doi.org/10.1201/9781003194156-6

128 6 Multinomial Logistic Regression for Nominal Category Outcomes

recovered’ patients)1. In organizational settings, one can imagine that the
odds of different types of mid-tenure career path changes could only be well
understood relative to a reference career path (probably the most common
one). While this approach would still be founded on binomial models, the
reference points of these models are different; we would need to make decisions
on refining the model differently, and we interpret the coefficients in a different
way.

In this chapter we will briefly look at the stratified approach (which is effec-
tively a repetition of work done in the previous chapter) before focusing more
intently on how we construct models and make inferences using a multinomial
approach.

6.1.2 Use cases for multinomial logistic regression

Multinomial logistic regression is appropriate for any situation where a limited
number of outcome categories (more than two) are being modeled and where
those outcome categories have no order. An underlying assumption is the inde-
pendence of irrelevant alternatives (IIA). Otherwise stated, this assumption
means that there is no other alternative for the outcome that, if included,
would disproportionately influence the membership of one of the other cate-
gories2. In cases where this assumption is violated, one could choose to take
a stratified approach, or attempt hierarchical or nested multinomial model
alternatives, which are beyond the scope of this book.

Examples of typical situations that might be modeled by multinomial logistic
regression include:

1. Modeling voting choice in elections with multiple candidates
2. Modeling choice of career options by students
3. Modeling choice of benefit options by employees

6.1.3 Walkthrough example

You are an analyst at a large technology company. The company recently
introduced a new health insurance provider for its employees. At the beginning
of the year the employees had to choose one of three different health plan

1In Hosmer, Lemeshow, and Sturdivant (2013), a good example is provided where the out-
come is the placement of psychiatric patients in various forms of aftercare, with Outpatient
Care as the reference.

2Put differently, it assumes that adding or removing any other available alternative would
affect the odds of the other alternatives in equal proportion. It has been shown that there
have been many studies that proceeded with a multinomial approach despite the violation
of this assumption.

6.1 When to use it 129

products from this provider to best suit their needs. You have been asked to
determine which factors influenced the choice in product.

The health_insurance data set consists of the following fields:

• product: The choice of product of the individual—A, B or C
• age: The age of the individual when they made the choice
• gender: The gender of the individual as stated when they made the choice
• household: The number of people living with the individual in the same

household at the time of the choice
• position_level: Position level in the company at the time they made the

choice, where 1 is is the lowest and 5 is the highest
• absent: The number of days the individual was absent from work in the year

prior to the choice

First we load the data and take a look at it briefly.

if needed, download health_insurance data
url <- "http://peopleanalytics-regression-book.org/data/health_insurance.csv"
health_insurance <- read.csv(url)

view first few rows
head(health_insurance)

product age household position_level gender absent
1 C 57 2 2 Male 10
2 A 21 7 2 Male 7
3 C 66 7 2 Male 1
4 A 36 4 2 Female 6
5 A 23 0 2 Male 11
6 A 31 5 1 Male 14

view structure
str(health_insurance)

130 6 Multinomial Logistic Regression for Nominal Category Outcomes

'data.frame': 1453 obs. of 6 variables:
$ product : chr "C" "A" "C" "A" ...
$ age : int 57 21 66 36 23 31 37 37 55 66 ...
$ household : int 2 7 7 4 0 5 3 0 3 2 ...
$ position_level: int 2 2 2 2 2 1 3 3 3 4 ...
$ gender : chr "Male" "Male" "Male" "Female" ...
$ absent : int 10 7 1 6 11 14 12 25 3 18 ...

It looks like two of these columns should be converted to factor—product and
gender—so let’s do that and then run a pairplot for a quick overview of any
patterns, which can be seen in Figure 6.1.

library(GGally)

convert product and gender to factors
health_insurance$product <- as.factor(health_insurance$product)
health_insurance$gender <- as.factor(health_insurance$gender)

GGally::ggpairs(health_insurance)

Corr:

0.018

Corr:

0.151***

Corr:

-0.003

Corr:

0.043

Corr:

-0.008

Corr:

0.335***

product age household position_level gender absent

product
age

householdposition_level
gender

absent

01020304001020304001020304020 30 40 50 60 0 2 4 6 1 2 3 4 5 020406002040600204060 0 10 20 30

0
100
200
300
400
500

20
30
40
50
60

0
2
4
6

1
2
3
4
5

0100200300400

0100200300400

0100200300400

0
10
20
30

FIGURE 6.1: Pairplot of the health_insurance data set

The data appears somewhat chaotic here. However, there are a few things
to note. Firstly, we notice that there is a relatively even spread in choice
between the products. We also notice that age seems to be playing a role

6.2 Running stratified binomial models 131

in product choice. There are also some mild-to-moderate correlations in the
data—in particular between age and position_level, and between absent and
position_level. However, this problem is clearly more complex than we can
determine from a bivariate perspective.

6.2 Running stratified binomial models

One approach to this problem is to look at each product choice and treat it
as an independent binomial logistic regression model, modeling that choice
against an alternative of all other choices. Each such model may help us de-
scribe the dynamics of the choice of a specific product, but we have to be care-
ful in making conclusions about the overall choice between the three products.
Running stratified models would not be very efficient if we had a wider range
of choices for our outcome, but since we only have three possible choices here,
it is reasonable to take this route.

6.2.1 Modeling the choice of Product A versus other products

Let’s first create and refine a binomial model for the choice of Product A.

library(dummies)

create dummies for product choice outcome
dummy_product <- dummies::dummy("product", data = health_insurance)

combine to original set
health_insurance <- cbind(health_insurance, dummy_product)

run a binomial model for the Product A dummy against
all input variables (let glm() handle dummy input variables)
A_model <- glm(
formula = productA ~ age + gender + household +
position_level + absent,

data = health_insurance,
family = "binomial"

)

132 6 Multinomial Logistic Regression for Nominal Category Outcomes

summary
summary(A_model)

##
Call:
glm(formula = productA ~ age + gender + household + position_level +
absent, family = "binomial", data = health_insurance)
##
Deviance Residuals:
Min 1Q Median 3Q Max
-2.19640 -0.43691 -0.07051 0.46304 2.37416
##
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 5.873634 0.453041 12.965 < 2e-16 ***
age -0.239814 0.013945 -17.197 < 2e-16 ***
genderMale 0.845978 0.168237 5.028 4.94e-07 ***
genderNon-binary 0.222521 1.246591 0.179 0.858
household 0.240205 0.037358 6.430 1.28e-10 ***
position_level 0.321497 0.071770 4.480 7.48e-06 ***
absent -0.003751 0.010753 -0.349 0.727

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
(Dispersion parameter for binomial family taken to be 1)
##
Null deviance: 1864.15 on 1452 degrees of freedom
Residual deviance: 940.92 on 1446 degrees of freedom
AIC: 954.92
##
Number of Fisher Scoring iterations: 6

We see that all variables except absent seem to play a significant role in the
choice of Product A. All else being equal, being older makes the choice of
Product A less likely. Males are more likely to choose Product A, and larger
households and higher position levels also make the choice of Product A more
likely. Based on this, we can consider simplifying our model to remove absent.
We can also calculate odds ratios and perform some model diagnostics if we
wish, similar to how we approached the problem in the previous chapter.

These results need to be interpreted carefully. For example, the odds ratios
for the Product A choice based on a simplified model are as follows:

6.3 Running a multinomial regression model 133

simpler model
A_simple <- glm(
formula = productA ~ age + household + gender + position_level,
data = health_insurance

)

view odds ratio as a data frame
as.data.frame(exp(A_simple$coefficients))

exp(A_simple$coefficients)
(Intercept) 2.8212501
age 0.9776023
household 1.0253707
genderMale 1.0973280
genderNon-binary 0.9697639
position_level 1.0397906

As an example, and as a reminder from our previous chapter, we interpret the
odds ratio for age as follows: all else being equal, every additional year of age
is associated with an approximately 2.2% decrease in the odds of choosing
Product A over the other products.

6.2.2 Modeling other choices

In a similar way we can produce two other models, representing the choice of
Products B and C. These models produce similar significant variables, except
that position_level does not appear to be significant in the choice of Product
C. If we simplify all our three models we will have a slightly differently defined
model for the choice of Product C versus our models for the other two product
choices. However, we can conclude in general that the only input variable that
seems to be non-significant across all choices of product is absent.

6.3 Running a multinomial regression model

An alternative to running separate binary stratified models is to run a multi-
nomial logistic regression model. A multinomial logistic model will base itself
from a defined reference category, and run a generalized linear model on the
log-odds of membership of each of the other categories versus the reference

134 6 Multinomial Logistic Regression for Nominal Category Outcomes

category. Due to its extensive use in epidemiology and medicine, this is often
known as the relative risk of one category compared to the reference category.
Mathematically speaking, if 𝑋 is the vector of input variables, and 𝑦 takes
the value 𝐴, 𝐵 or 𝐶, with 𝐴 as the reference, a multinomial logistic regression
model will calculate:

ln (𝑃(𝑦 = 𝐵)
𝑃 (𝑦 = 𝐴)) = 𝛼𝑋

and

ln (𝑃 (𝑦 = 𝐶)
𝑃 (𝑦 = 𝐴)) = 𝛽𝑋

for different vectors of coefficients 𝛼 and 𝛽.

6.3.1 Defining a reference level and running the model

The nnet package in R contains a multinom() function for running a multi-
nomial logistic regression model using neural network technology3. Before we
can run the model we need to make sure our reference level is defined.

define reference by ensuring it is the first level of the factor
health_insurance$product <- relevel(health_insurance$product, ref = "A")

check that A is now our reference
levels(health_insurance$product)

[1] "A" "B" "C"

Once the reference outcome is defined, the multinom() function from the nnet
package will run a series of binomial models comparing the reference to each
of the other categories.

First we will calculate our multinomial logistic regression model.

3Neural networks are computational structures which consist of a network of nodes, each
of which take an input and perform a mathematical function to return an output onward in
the network. Most commonly they are used in deep learning, but a simple neural network
here can model these different categories using a logistic function.

6.3 Running a multinomial regression model 135

library(nnet)

multi_model <- multinom(
formula = product ~ age + gender + household +
position_level + absent,

data = health_insurance
)

Now we will look at a summary of the results.

summary(multi_model)

Call:
multinom(formula = product ~ age + gender + household + position_level +
absent, data = health_insurance)
##
Coefficients:
(Intercept) age genderMale genderNon-binary household position_level absent
B -4.60100 0.2436645 -2.38259765 0.2523409 -0.9677237 -0.4153040 0.011676034
C -10.22617 0.2698141 0.09670752 -1.2715643 0.2043568 -0.2135843 0.003263631
##
Std. Errors:
(Intercept) age genderMale genderNon-binary household position_level absent
B 0.5105532 0.01543139 0.2324262 1.226141 0.06943089 0.08916739 0.01298141
C 0.6197408 0.01567034 0.1954353 2.036273 0.04960655 0.08226087 0.01241814
##
Residual Deviance: 1489.365
AIC: 1517.365

Notice that the output of summary(multi_model) is much less detailed than for
our standard binomial models, and it effectively just delivers the coefficients
and standard errors of the two models against the reference. To determine
whether specific input variables are significant we will need to calculate the
p-values of the coefficients manually by calculating the z-statistics and con-
verting (we covered this hypothesis testing methodology in Section 3.3.1).

calculate z-statistics of coefficients
z_stats <- summary(multi_model)$coefficients/
summary(multi_model)$standard.errors

convert to p-values
p_values <- (1 - pnorm(abs(z_stats)))*2

display p-values in transposed data frame
data.frame(t(p_values))

136 6 Multinomial Logistic Regression for Nominal Category Outcomes

B C
(Intercept) 0.000000e+00 0.000000e+00
age 0.000000e+00 0.000000e+00
genderMale 0.000000e+00 6.207192e-01
genderNon-binary 8.369465e-01 5.323278e-01
household 0.000000e+00 3.796088e-05
position_level 3.199529e-06 9.419906e-03
absent 3.684170e-01 7.926958e-01

6.3.2 Interpreting the model

This confirms that all variables except absent play a role in the choice between
all products relative to a reference of Product A. We can also calculate odds
ratios as before.

display odds ratios in transposed data frame
odds_ratios <- exp(summary(multi_model)$coefficients)
data.frame(t(odds_ratios))

B C
(Intercept) 0.01004179 3.621021e-05
age 1.27591615 1.309721e+00
genderMale 0.09231048 1.101538e+00
genderNon-binary 1.28703467 2.803927e-01
household 0.37994694 1.226736e+00
position_level 0.66013957 8.076841e-01
absent 1.01174446 1.003269e+00

Here are some examples of how these odds ratios can be interpreted in the
multinomial context (used in combination with the p-values above):

• All else being equal, every additional year of age increases the relative odds of
selecting Product B versus Product A by approximately 28%, and increases
the relative odds of selecting Product C versus Product A by approximately
31%

• All else being equal, being Male reduces the relative odds of selecting Prod-
uct B relative to Product A by 91%.

• All else being equal, each additional household member deceases the odds of
selecting Product B relative to Product A by 62%, and increases the odds
of selecting Product C relative to Product A by 23%.

6.3 Running a multinomial regression model 137

6.3.3 Changing the reference

It may be the case that someone would like to hear the odds ratios stated
against the reference of an individual choosing Product B. For example, what
are the odds ratios of Product C relative to a reference of Product B? One
way to do this would be to change the reference and run the model again.
Another option is to note that:

𝑃(𝑦 = 𝐶)
𝑃(𝑦 = 𝐵) =

𝑃(𝑦=𝐶)
𝑃(𝑦=𝐴)
𝑃(𝑦=𝐵)
𝑃(𝑦=𝐴)

= 𝑒𝛽𝑋

𝑒𝛼𝑋 = 𝑒(𝛽−𝛼)𝑋

Therefore

ln (𝑃(𝑦 = 𝐶)
𝑃 (𝑦 = 𝐵)) = (𝛽 − 𝛼)𝑋

This means we can obtain the coefficients of C against the reference of B by
simply calculating the difference between the coefficients of C and B against
the common reference of A. Let’s do this.

calculate difference between coefficients and view as column
coefs_c_to_b <- summary(multi_model)$coefficients[2,] -

summary(multi_model)$coefficients[1,]

data.frame(coefs_c_to_b)

coefs_c_to_b
(Intercept) -5.625169520
age 0.026149597
genderMale 2.479305168
genderNon-binary -1.523905192
household 1.172080452
position_level 0.201719688
absent -0.008412403

If the number of categories in the outcome variable is limited, this can be an
efficient way to obtain the model coefficients against various reference points
without having to rerun models. However, to determine standard errors and
p-values for these coefficients the model will need to be recalculated against
the new reference.

138 6 Multinomial Logistic Regression for Nominal Category Outcomes

6.4 Model simplification, fit and goodness-of-fit for
multinomial logistic regression models

Simplifying a multinomial regression model needs to be done with care. In
a binomial model, there is one set of coefficients and their p-values can be a
strong guide to which variables can be removed safely. However, in multinomial
models there are several sets of coefficients to consider.

6.4.1 Gradual safe elimination of variables

In Hosmer, Lemeshow, and Sturdivant (2013), a gradual process of elimination
of variables is recommended to ensure that significant variables that confound
each other in the different logistic models are not accidentally dropped from
the final model. The recommended approach is as follows:

• Start with the variable with the least significant p-values in all sets of
coefficients—in our case absent would be the obvious first candidate.

• Run the multinomial model without this variable.
• Test that none of the previous coefficients change by more than 20–25%.
• If there was no such change, safely remove the variable and proceed to the

next non-significant variable.
• If there is such a change, retain the variable and proceed to the next non-

significant variable.
• Stop when all non-significant variables have been tested.

In our case, we can compare the coefficients of the model with and without
absent included and verify that the changes in the coefficients are not sub-
stantial.

remove absent
simpler_multi_model <- multinom(
formula = product ~ age + gender + household + position_level,
data = health_insurance,
model = TRUE

)

view coefficients with absent
data.frame(t(summary(multi_model)$coefficients))

6.4 Model simplification, fit and goodness-of-fit for multinomial logistic regression models139

B C
(Intercept) -4.60099991 -10.226169428
age 0.24366447 0.269814063
genderMale -2.38259765 0.096707521
genderNon-binary 0.25234087 -1.271564323
household -0.96772368 0.204356774
position_level -0.41530400 -0.213584308
absent 0.01167603 0.003263631

view coefficients without absent
data.frame(t(summary(simpler_multi_model)$coefficients))

B C
(Intercept) -4.5008999 -10.19269011
age 0.2433855 0.26976294
genderMale -2.3771342 0.09801281
genderNon-binary 0.1712091 -1.29636779
household -0.9641956 0.20510806
position_level -0.3912014 -0.20908835

We can see that only genderNon-binary changed substantially, but we note that
this is on an extremely small sample size and so will not have any effect on our
model4. It therefore appears safe to remove absent. Furthermore, the Akaike
Information Criterion is equally valid in multinomial models for evaluating
model parsimony. Here we can calculate that the AIC of our model with and
without absent is 1517.36 and 1514.25, respectively, confirming that the model
without absent is marginally more parsimonious.

6.4.2 Model fit and goodness-of-fit

As with the binomial case, a variety of Pseudo-𝑅2 methods are available to
assess the fit of a multinomial logistic regression model, although some of our
previous variants (particularly Tjur) are not defined on models with more
than two outcome categories.

4Removing insignificant dummy variables, or combining them to make simpler dummy
variables can also be done. In the case of these observations of genderNon-binary, given the
relatively small number of these observations in the data set, it does not harm the model
to leave this variable included, safe in the knowledge that it has a minuscule effect

140 6 Multinomial Logistic Regression for Nominal Category Outcomes

DescTools::PseudoR2(simpler_multi_model,
which = c("McFadden", "CoxSnell", "Nagelkerke"))

McFadden CoxSnell Nagelkerke
0.5329175 0.6896945 0.7760413

Due to the fact that multinomial models have more than one set of coeffi-
cients, assessing goodness-of-fit is more challenging, and is still an area of
intense research. The most approachable method to assess model confidence
is the Hosmer-Lemeshow test mentioned in the previous chapter, which was
extended in Fagerland, Hosmer, and Bofin (2008) for multinomial models. An
implementation is available in the generalhoslem package in R. However, this
version of the Hosmer-Lemeshow test is problematic for models with a small
number of input variables (fewer than ten), and therefore we will not experi-
ment with it here. For further exploration of this topic, Chapter 8 of Hosmer,
Lemeshow, and Sturdivant (2013) is recommended, and for a more thorough
treatment of the entire topic of categorical analytics, Agresti (2007) is an
excellent companion.

6.5 Learning exercises

6.5.1 Discussion questions

1. Describe the difference between a stratified versus a multinomial
approach to modeling an outcome with more than two nominal
categories.

2. Describe how you would interpret the odds ratio of an input variable
for a given category in a stratified modeling approach.

3. Describe what is meant by the ‘reference’ of a multinomial logistic
regression model with at least three nominal outcome categories.

4. Describe how you would interpret the odds ratio of an input variable
for a given category in a multinomial modeling approach.

5. Given a multinomial logistic regression model with outcome cate-
gories A, B, C and D and reference category A, describe two ways to
determine the coefficients of a multinomial logistic regression model
with reference category C.

6. Describe a process for safely simplifying a multinomial logistic re-
gression model by removing input variables.

6.5 Learning exercises 141

6.5.2 Data exercises

Use the same health_insurance data set from this chapter to answer these
questions.

1. Complete the full stratified approach to modeling the three product
choices that was started in Section 6.2. Calculate the coefficients,
odds ratios and p-values in each case.

2. Carefully write down your interpretation of the odds ratios from
the previous question.

3. Run a multinomial logistic regression model on the product outcome
using Product B as reference. Calculate the coefficients, ratios and
p-values in each case.

4. Verify that the coefficients for Product C against reference Product
B matches those calculated in Section 6.3.3.

5. Carefully write down your interpretation of the odds ratios calcu-
lated in the previous question.

6. Use the process described in Section 6.4.1 to simplify the multino-
mial model in Question 3.

http://taylorandfrancis.com

7
Proportional Odds Logistic Regression for
Ordered Category Outcomes

Often our outcomes will be categorical in nature, but they will also have an
order to them. These are sometimes known as ordinal outcomes. Some very
common examples of this include ratings of some form, such as job perfor-
mance ratings or survey responses on Likert scales. The appropriate modeling
approach for these outcome types is ordinal logistic regression. Surprisingly,
this approach is frequently not understood or adopted by analysts. Often they
treat the outcome as a continuous variable and perform simple linear regres-
sion, which can lead to wildly inaccurate inferences. Given the prevalence of
ordinal outcomes in people analytics, it would serve analysts well to know how
to run ordinal logistic regression models, how to interpret them and how to
confirm their validity.

In fact, there are numerous known ways to approach the inferential modeling
of ordinal outcomes, all of which build on the theory of linear, binomial and
multinomial regression which we covered in previous chapters. In this chapter,
we will focus on the most commonly adopted approach: proportional odds lo-
gistic regression. Proportional odds models (sometimes known as constrained
cumulative logistic models) are more attractive than other approaches because
of their ease of interpretation but cannot be used blindly without important
checking of underlying assumptions.

7.1 When to use it

7.1.1 Intuition for proportional odds logistic regression

Ordinal outcomes can be considered to be suitable for an approach somewhere
‘between’ linear regression and multinomial regression. In common with linear
regression, we can consider our outcome to increase or decrease dependent on
our inputs. However, unlike linear regression the increase and decrease is ‘step-
wise’ rather than continuous, and we do not know that the difference between

DOI: 10.1201/9781003194156-7 143

https://doi.org/10.1201/9781003194156-7

144 7 Proportional Odds Logistic Regression for Ordered Category Outcomes

the steps is the same across the scale. In medical settings, the difference be-
tween moving from a healthy to an early-stage disease may not be equivalent
to moving from an early-stage disease to an intermediate- or advanced-stage.
Equally, it may be a much bigger psychological step for an individual to say
that they are very dissatisfied in their work than it is to say that they are very
satisfied in their work. In this sense, we are analyzing categorical outcomes
similar to a multinomial approach.

To formalize this intuition, we can imagine a latent version of our outcome
variable that takes a continuous form, and where the categories are formed at
specific cutoff points on that continuous variable. For example, if our outcome
variable 𝑦 represents survey responses on an ordinal Likert scale of 1 to 5, we
can imagine we are actually dealing with a continuous variable 𝑦′ along with
four increasing ‘cutoff points’ for 𝑦′ at 𝜏1, 𝜏2, 𝜏3 and 𝜏4. We then define each
ordinal category as follows: 𝑦 = 1 corresponds to 𝑦′ ≤ 𝜏1, 𝑦 ≤ 2 to 𝑦′ ≤ 𝜏2,
𝑦 ≤ 3 to 𝑦′ ≤ 𝜏3 and 𝑦 ≤ 4 to 𝑦′ ≤ 𝜏4. Further, at each such cutoff 𝜏𝑘, we
assume that the probability 𝑃(𝑦 > 𝜏𝑘) takes the form of a logistic function.
Therefore, in the proportional odds model, we ‘divide’ the probability space
at each level of the outcome variable and consider each as a binomial logistic
regression model. For example, at rating 3, we generate a binomial logistic
regression model of 𝑃(𝑦 > 𝜏3), as illustrated in Figure 7.1.

y = 1,2,3

y = 4,5

y' = bx + c

y' = τ3

x

y'

0.00

0.25

0.50

0.75

1.00

x

P(
y'

>
τ

3)

FIGURE 7.1: Proportional odds model illustration for a 5-point Likert sur-
vey scale outcome greater than 3 on a single input variable. Each cutoff point
𝜏𝑘 in the latent continuous outcome variable 𝑦′ gives rise to a binomial logistic
function.

7.1 When to use it 145

This approach leads to a highly interpretable model that provides a single set
of coefficients that are agnostic to the outcome category. For example, we can
say that each unit increase in input variable 𝑥 increases the odds of 𝑦 being
in a higher category by a certain ratio.

7.1.2 Use cases for proportional odds logistic regression

Proportional odds logistic regression can be used when there are more than
two outcome categories that have an order. An important underlying assump-
tion is that no input variable has a disproportionate effect on a specific level
of the outcome variable. This is known as the proportional odds assumption.
Referring to Figure 7.1, this assumption means that the ‘slope’ of the logistic
function is the same for all category cutoffs1. If this assumption is violated, we
cannot reduce the coefficients of the model to a single set across all outcome
categories, and this modeling approach fails. Therefore, testing the propor-
tional odds assumption is an important validation step for anyone running
this type of model.

Examples of problems that can utilize a proportional odds logistic regression
approach include:

1. Understanding the factors associated with higher ratings in an em-
ployee survey on a Likert scale

2. Understanding the factors associated with higher job performance
ratings on an ordinal performance scale

3. Understanding the factors associated with voting preference in a
ranked preference voting system (for example, proportional repre-
sentation systems)

7.1.3 Walkthrough example

You are an analyst for a sports broadcaster who is doing a feature on player
discipline in professional soccer games. To prepare for the feature, you have
been asked to verify whether certain metrics are significant in influencing
the extent to which a player will be disciplined by the referee for unfair or
dangerous play in a game. You have been provided with data on over 2000
different players in different games, and the data contains these fields:

• discipline: A record of the maximum discipline taken by the referee against
the player in the game. ‘None’ means no discipline was taken, ‘Yellow’ means
the player was issued a yellow card (warned), ‘Red’ means the player was
issued a red card and ordered off the field of play.

1This also leads to another term for the assumption—the parallel regression assumption.

146 7 Proportional Odds Logistic Regression for Ordered Category Outcomes

• n_yellow_25 is the total number of yellow cards issued to the player in the
previous 25 games they played prior to this game.

• n_red_25 is the total number of red cards issued to the player in the previous
25 games they played prior to this game.

• position is the playing position of the player in the game: ‘D’ is defense
(including goalkeeper), ‘M’ is midfield and ‘S’ is striker/attacker.

• level is the skill level of the competition in which the game took place, with
1 being higher and 2 being lower.

• country is the country in which the game took place—England or Germany.
• result is the result of the game for the team of the player—‘W’ is win, ‘L’

is lose, ‘D’ is a draw/tie.

Let’s download the soccer data set and take a quick look at it.

if needed, download data
url <- "http://peopleanalytics-regression-book.org/data/soccer.csv"
soccer <- read.csv(url)

head(soccer)

discipline n_yellow_25 n_red_25 position result country level
1 None 4 1 S D England 1
2 None 2 2 D W England 2
3 None 2 1 M D England 1
4 None 2 1 M L Germany 1
5 None 2 0 S W Germany 1
6 None 3 2 M W England 1

Let’s also take a look at the structure of the data.

str(soccer)

7.1 When to use it 147

'data.frame': 2291 obs. of 7 variables:
$ discipline : chr "None" "None" "None" "None" ...
$ n_yellow_25: int 4 2 2 2 2 3 4 3 4 3 ...
$ n_red_25 : int 1 2 1 1 0 2 2 0 3 3 ...
$ position : chr "S" "D" "M" "M" ...
$ result : chr "D" "W" "D" "L" ...
$ country : chr "England" "England" "England" "Germany" ...
$ level : int 1 2 1 1 1 1 2 1 1 1 ...

We see that there are numerous fields that need to be converted to factors
before we can model them. Firstly, our outcome of interest is discipline and
this needs to be an ordered factor, which we can choose to increase with the
seriousness of the disciplinary action.

convert discipline to ordered factor
soccer$discipline <- ordered(soccer$discipline,

levels = c("None", "Yellow", "Red"))

check conversion
str(soccer)

'data.frame': 2291 obs. of 7 variables:
$ discipline : Ord.factor w/ 3 levels "None"<"Yellow"<..: 1 1 1 1 1 1 1 1 1 1 ...
$ n_yellow_25: int 4 2 2 2 2 3 4 3 4 3 ...
$ n_red_25 : int 1 2 1 1 0 2 2 0 3 3 ...
$ position : chr "S" "D" "M" "M" ...
$ result : chr "D" "W" "D" "L" ...
$ country : chr "England" "England" "England" "Germany" ...
$ level : int 1 2 1 1 1 1 2 1 1 1 ...

We also know that position, country, result and level are categorical, so we
convert them to factors. We could in fact choose to convert result and level
into ordered factors if we so wish, but this is not necessary for input variables,
and the results are usually a little bit easier to read as nominal factors.

apply as.factor to four columns
cats <- c("position", "country", "result", "level")
soccer[,cats] <- lapply(soccer[,cats], as.factor)

check again
str(soccer)

148 7 Proportional Odds Logistic Regression for Ordered Category Outcomes

'data.frame': 2291 obs. of 7 variables:
$ discipline : Ord.factor w/ 3 levels "None"<"Yellow"<..: 1 1 1 1 1 1 1 1 1 1 ...
$ n_yellow_25: int 4 2 2 2 2 3 4 3 4 3 ...
$ n_red_25 : int 1 2 1 1 0 2 2 0 3 3 ...
$ position : Factor w/ 3 levels "D","M","S": 3 1 2 2 3 2 2 2 2 1 ...
$ result : Factor w/ 3 levels "D","L","W": 1 3 1 2 3 3 3 3 1 2 ...
$ country : Factor w/ 2 levels "England","Germany": 1 1 1 2 2 1 2 1 2 1 ...
$ level : Factor w/ 2 levels "1","2": 1 2 1 1 1 1 2 1 1 1 ...

Now our data is in a position to run a model. You may wish to conduct some
exploratory data analysis at this stage similar to previous chapters, but from
this chapter onward we will skip this and focus on the modeling methodology.

7.2 Modeling ordinal outcomes under the assumption of
proportional odds

For simplicity, and noting that this is easily generalizable, let’s assume that we
have an ordinal outcome variable 𝑦 with three levels similar to our walkthrough
example, and that we have one input variable 𝑥. Let’s call the outcome levels
1, 2 and 3. To follow our intuition from Section 7.1.1, we can model a linear
continuous variable 𝑦′ = 𝛼1𝑥 + 𝛼0 + 𝐸, where 𝐸 is some error with a mean of
zero, and two increasing cutoff values 𝜏1 and 𝜏2. We define 𝑦 in terms of 𝑦′ as
follows: 𝑦 = 1 if 𝑦′ ≤ 𝜏1, 𝑦 = 2 if 𝜏1 < 𝑦′ ≤ 𝜏2 and 𝑦 = 3 if 𝑦′ > 𝜏2.

7.2.1 Using a latent continuous outcome variable to derive a
proportional odds model

Recall from Section 4.5.3 that our linear regression approach assumes that our
residuals 𝐸 around our line 𝑦′ = 𝛼1𝑥 + 𝛼0 have a normal distribution. Let’s
modify that assumption slightly and instead assume that our residuals take a
logistic distribution based on the variance of 𝑦′. Therefore, 𝑦′ = 𝛼1𝑥+𝛼0 +𝜎𝜖,
where 𝜎 is proportional to the variance of 𝑦′ and 𝜖 follows the shape of a
logistic function. That is

𝑃(𝜖 ≤ 𝑧) = 1
1 + 𝑒−𝑧

Let’s look at the probability that our ordinal outcome variable 𝑦 is in its lowest
category.

7.2 Modeling ordinal outcomes under the assumption of proportional odds149

𝑃 (𝑦 = 1) = 𝑃(𝑦′ ≤ 𝜏1)
= 𝑃 (𝛼1𝑥 + 𝛼0 + 𝜎𝜖 ≤ 𝜏1)
= 𝑃 (𝜖 ≤ 𝜏1 − 𝛼1𝑥 − 𝛼0

𝜎)
= 𝑃 (𝜖 ≤ 𝛾1 − 𝛽𝑥)

= 1
1 + 𝑒−(𝛾1−𝛽𝑥)

where 𝛾1 = 𝜏1−𝛼0
𝜎 and 𝛽 = 𝛼1

𝜎 .

Since our only values for 𝑦 are 1, 2 and 3, similar to our derivations in Section
5.2, we conclude that 𝑃(𝑦 > 1) = 1 − 𝑃(𝑦 = 1), which calculates to

𝑃(𝑦 > 1) = 𝑒−(𝛾1−𝛽𝑥)

1 + 𝑒−(𝛾1−𝛽𝑥)

Therefore
𝑃 (𝑦 = 1)
𝑃 (𝑦 > 1) =

1
1+𝑒−(𝛾1−𝛽𝑥)

𝑒−(𝛾1−𝛽𝑥)

1+𝑒−(𝛾1−𝛽𝑥)

= 𝑒𝛾1−𝛽𝑥

By applying the natural logarithm, we conclude that the log odds of 𝑦 being
in our bottom category is

ln (𝑃 (𝑦 = 1)
𝑃 (𝑦 > 1)) = 𝛾1 − 𝛽𝑥

In a similar way we can derive the log odds of our ordinal outcome being in
our bottom two categories as

ln (𝑃 (𝑦 ≤ 2)
𝑃 (𝑦 = 3)) = 𝛾2 − 𝛽𝑥

where 𝛾2 = 𝜏2−𝛼0
𝜎 . One can easily see how this generalizes to an arbitrary

number of ordinal categories, where we can state the log odds of being in
category 𝑘 or lower as

ln (𝑃 (𝑦 ≤ 𝑘)
𝑃 (𝑦 > 𝑘)) = 𝛾𝑘 − 𝛽𝑥

Alternatively, we can state the log odds of being in a category higher than 𝑘
by simply inverting the above expression:

ln (𝑃(𝑦 > 𝑘)
𝑃(𝑦 ≤ 𝑘)) = −(𝛾𝑘 − 𝛽𝑥) = 𝛽𝑥 − 𝛾𝑘

150 7 Proportional Odds Logistic Regression for Ordered Category Outcomes

By taking exponents we see that the impact of a unit change in 𝑥 on the odds
of 𝑦 being in a higher ordinal category is 𝛽, irrespective of what category we
are looking at. Therefore we have a single coefficient to explain the effect of 𝑥
on 𝑦 throughout the ordinal scale. Note that there are still different intercept
coefficients 𝛾1 and 𝛾2 for each level of the ordinal scale.

7.2.2 Running a proportional odds logistic regression model

The MASS package provides a function polr() for running a proportional odds
logistic regression model on a data set in a similar way to our previous models.
The key (and obvious) requirement is that the outcome is an ordered factor.
Since we did our conversions in Section 7.1.3 we are ready to run this model.
We will start by running it on all input variables and let the polr() function
handle our dummy variables automatically.

run proportional odds model
library(MASS)
model <- polr(
formula = discipline ~ n_yellow_25 + n_red_25 + position +
country + level + result,

data = soccer
)

get summary
summary(model)

Call:
polr(formula = discipline ~ n_yellow_25 + n_red_25 + position +
country + level + result, data = soccer)
##
Coefficients:
Value Std. Error t value
n_yellow_25 0.32236 0.03308 9.7456
n_red_25 0.38324 0.04051 9.4616
positionM 0.19685 0.11649 1.6899
positionS -0.68534 0.15011 -4.5655
countryGermany 0.13297 0.09360 1.4206
level2 0.09097 0.09355 0.9724
resultL 0.48303 0.11195 4.3147
resultW -0.73947 0.12129 -6.0966
##
Intercepts:

7.2 Modeling ordinal outcomes under the assumption of proportional odds151

Value Std. Error t value
None|Yellow 2.5085 0.1918 13.0770
Yellow|Red 3.9257 0.2057 19.0834
##
Residual Deviance: 3444.534
AIC: 3464.534

We can see that the summary returns a single set of coefficients on our input
variables as we expect, with standard errors and t-statistics. We also see that
there are separate intercepts for the various levels of our outcomes, as we also
expect. In interpreting our model, we generally don’t have a great deal of
interest in the intercepts, but we will focus on the coefficients. First we would
like to obtain p-values, so we can add a p-value column using the conversion
methods from the t-statistic which we learned in Section 3.3.12.

get coefficients (it's in matrix form)
coefficients <- summary(model)$coefficients

calculate p-values
p_value <- (1 - pnorm(abs(coefficients[,"t value"]), 0, 1))*2

bind back to coefficients
(coefficients <- cbind(coefficients, p_value))

Value Std. Error t value p_value
n_yellow_25 0.32236030 0.03307768 9.7455529 0.000000e+00
n_red_25 0.38324333 0.04050515 9.4615947 0.000000e+00
positionM 0.19684666 0.11648690 1.6898610 9.105456e-02
positionS -0.68533697 0.15011194 -4.5655060 4.982908e-06
countryGermany 0.13297173 0.09359946 1.4206464 1.554196e-01
level2 0.09096627 0.09354717 0.9724108 3.308462e-01
resultL 0.48303227 0.11195131 4.3146639 1.598459e-05
resultW -0.73947295 0.12129301 -6.0965834 1.083595e-09
None|Yellow 2.50850778 0.19182628 13.0769766 0.000000e+00
Yellow|Red 3.92572124 0.20571423 19.0833721 0.000000e+00

Next we can convert our coefficients to odds ratios.

2Note this is not totally necessary, as significance can be estimated from viewing the
confidence intervals that are formed from two standard errors either side of the coefficient
estimate. However, we show how to calculate p-values here for precision purposes.

152 7 Proportional Odds Logistic Regression for Ordered Category Outcomes

calculate odds ratios
odds_ratio <- exp(coefficients[,"Value"])

We can display all our critical statistics by combining them into a dataframe.

combine with coefficient and p_value
(coefficients <- cbind(
coefficients[,c("Value", "p_value")],
odds_ratio

))

Value p_value odds_ratio
n_yellow_25 0.32236030 0.000000e+00 1.3803820
n_red_25 0.38324333 0.000000e+00 1.4670350
positionM 0.19684666 9.105456e-02 1.2175573
positionS -0.68533697 4.982908e-06 0.5039204
countryGermany 0.13297173 1.554196e-01 1.1422177
level2 0.09096627 3.308462e-01 1.0952321
resultL 0.48303227 1.598459e-05 1.6209822
resultW -0.73947295 1.083595e-09 0.4773654
None|Yellow 2.50850778 0.000000e+00 12.2865822
Yellow|Red 3.92572124 0.000000e+00 50.6896241

Taking into consideration the p-values, we can interpret our coefficients as
follows, in each case assuming that other coefficients are held still:

• Each additional yellow card received in the prior 25 games is associated
with an approximately 38% higher odds of greater disciplinary action by
the referee.

• Each additional red card received in the prior 25 games is associated with an
approximately 47% higher odds of greater disciplinary action by the referee.

• Strikers have approximately 50% lower odds of greater disciplinary action
from referees compared to Defenders.

• A player on a team that lost the game has approximately 62% higher odds
of greater disciplinary action versus a player on a team that drew the game.

• A player on a team that won the game has approximately 52% lower odds
of greater disciplinary action versus a player on a team that drew the game.

We can, as per previous chapters, remove the level and country variables
from this model to simplify it if we wish. An examination of the coefficients
and the AIC of the simpler model will reveal no substantial difference, and
therefore we proceed with this model.

7.2 Modeling ordinal outcomes under the assumption of proportional odds153

7.2.3 Calculating the likelihood of an observation being in a
specific ordinal category

Recall from Section 7.2.1 that our proportional odds model generates multiple
stratified binomial models, each of which has following form:

𝑃 (𝑦 ≤ 𝑘) = 𝑃 (𝑦′ ≤ 𝜏𝑘)
Note that for an ordinal variable 𝑦, if 𝑦 ≤ 𝑘 and 𝑦 > 𝑘 − 1, then 𝑦 = 𝑘.
Therefore 𝑃(𝑦 = 𝑘) = 𝑃 (𝑦 ≤ 𝑘) − 𝑃(𝑦 ≤ 𝑘 − 1). This means we can calculate
the specific probability of an observation being in each level of the ordinal
variable in our fitted model by simply calculating the difference between the
fitted values from each pair of adjacent stratified binomial models. In our
walkthrough example, this means we can calculate the specific probability of
no action from the referee, or a yellow card being awarded, or a red card being
awarded. These can be viewed using the fitted() function.

head(fitted(model))

None Yellow Red
1 0.8207093 0.12900184 0.05028889
2 0.8514232 0.10799553 0.04058128
3 0.7830785 0.15400189 0.06291964
4 0.6609864 0.22844107 0.11057249
5 0.9591298 0.03064719 0.01022301
6 0.7887766 0.15027145 0.06095200

It can be seen from this output how ordinal logistic regression models can be
used in predictive analytics by classifying new observations into the ordinal
category with the highest fitted probability. This also allows us to graphically
understand the output of a proportional odds model. Figure 7.2 shows the
output from a simpler proportional odds model fitted against the n_yellow_25
and n_red_25 input variables, with the fitted probabilities of each level of
discipline from the referee plotted on the different colored surfaces. We can
see in most situations that no discipline is the most likely outcome and a
red card is the least likely outcome. Only at the upper ends of the scales do
we see the likelihood of discipline overcoming the likelihood of no discipline,
with a strong likelihood of red cards for those with an extremely poor recent
disciplinary record.

154 7 Proportional Odds Logistic Regression for Ordered Category Outcomes

FIGURE 7.2: 3D visualization of a simple proportional odds model for dis-
cipline fitted against n_yellow_25 and n_red_25 in the soccer data set. Blue
represents the probability of no discipline from the referee. Yellow and red
represent the probability of a yellow card and a red card, respectively.

7.2.4 Model diagnostics

Similar to binomial and multinomial models, pseudo-𝑅2 methods are available
for assessing model fit, and AIC can be used to assess model parsimony. Note
that DescTools::PseudoR2() also offers AIC.

diagnostics of simpler model
DescTools::PseudoR2(
model,
which = c("McFadden", "CoxSnell", "Nagelkerke", "AIC")

)

McFadden CoxSnell Nagelkerke AIC
0.1009411 0.1553264 0.1912445 3464.5339371

There are numerous tests of goodness-of-fit that can apply to ordinal logistic
regression models, and this area is the subject of considerable recent research.

7.3 Testing the proportional odds assumption 155

The generalhoslem package in R contains routes to four possible tests, with
two of them particularly recommended for ordinal models. Each work in a
similar way to the Hosmer-Lemeshow test discussed in Section 5.3.2, by di-
viding the sample into groups and comparing the observed versus the fitted
outcomes using a chi-square test. Since the null hypothesis is a good model fit,
low p-values indicate potential problems with the model. We run these tests
below for reference. For more information, see Fagerland and Hosmer (2017),
and for a really intensive treatment of ordinal data modeling Agresti (2010)
is recommended.

lipsitz test
generalhoslem::lipsitz.test(model)

##
Lipsitz goodness of fit test for ordinal response models
##
data: formula: discipline ~ n_yellow_25 + n_red_25 + position + country + level + formula: result
LR statistic = 10.429, df = 9, p-value = 0.3169

pulkstenis-robinson test
(requires the vector of categorical input variables as an argument)
generalhoslem::pulkrob.chisq(model, catvars = cats)

##
Pulkstenis-Robinson chi-squared test
##
data: formula: discipline ~ n_yellow_25 + n_red_25 + position + country + level + formula: result
X-squared = 129.29, df = 137, p-value = 0.668

7.3 Testing the proportional odds assumption

As we discussed earlier, the suitability of a proportional odds logistic regression
model depends on the assumption that each input variable has a similar effect
on the different levels of the ordinal outcome variable. It is very important
to check that this assumption is not violated before proceeding to declare the
results of a proportional odds model valid. There are two common approaches
to validating the proportional odds assumption, and we will go through each
of them here.

156 7 Proportional Odds Logistic Regression for Ordered Category Outcomes

7.3.1 Sighting the coefficients of stratified binomial models

As we learned above, proportional odds regression models effectively act as a
series of stratified binomial models under the assumption that the ‘slope’ of
the logistic function of each stratified model is the same. We can verify this
by actually running stratified binomial models on our data and checking for
similar coefficients on our input variables. Let’s use our walkthrough example
to illustrate.

Let’s create two columns with binary values to correspond to the two higher
levels of our ordinal variable.

create binary variable for "Yellow" or "Red" versus "None"
soccer$yellow_plus <- ifelse(soccer$discipline == "None", 0, 1)

create binary variable for "Red" versus "Yellow" or "None"
soccer$red <- ifelse(soccer$discipline == "Red", 1, 0)

Now let’s create two binomial logistic regression models for the two higher
levels of our outcome variable.

model for at least a yellow card
yellowplus_model <- glm(
yellow_plus ~ n_yellow_25 + n_red_25 + position +
result + country + level,

data = soccer,
family = "binomial"

)

model for a red card
red_model <- glm(
red ~ n_yellow_25 + n_red_25 + position +
result + country + level,

data = soccer,
family = "binomial"

)

We can now display the coefficients of both models and examine the difference
between them.

7.3 Testing the proportional odds assumption 157

(coefficient_comparison <- data.frame(
yellowplus = summary(yellowplus_model)$coefficients[, "Estimate"],
red = summary(red_model)$coefficients[,"Estimate"],
diff = summary(red_model)$coefficients[,"Estimate"] -
summary(yellowplus_model)$coefficients[, "Estimate"]

))

yellowplus red diff
(Intercept) -2.63646519 -3.89865929 -1.26219410
n_yellow_25 0.34585921 0.32468746 -0.02117176
n_red_25 0.41454059 0.34213238 -0.07240822
positionM 0.26108978 0.06387813 -0.19721165
positionS -0.72118538 -0.44228286 0.27890252
resultL 0.46162324 0.64295195 0.18132871
resultW -0.77821530 -0.58536482 0.19285048
countryGermany 0.13136665 0.10796418 -0.02340247
level2 0.08056718 0.12421593 0.04364875

Ignoring the intercept, which is not of concern here, the differences appear
relatively small. Large differences in coefficients would indicate that the pro-
portional odds assumption is likely violated and alternative approaches to the
problem should be considered.

7.3.2 The Brant-Wald test

In the previous method, some judgment is required to decide whether the
coefficients of the stratified binomial models are ‘different enough’ to decide
on violation of the proportional odds assumption. For those requiring more
formal support, an option is the Brant-Wald test. Under this test, a general-
ized ordinal logistic regression model is approximated and compared to the
calculated proportional odds model. A generalized ordinal logistic regression
model is simply a relaxing of the proportional odds model to allow for different
coefficients at each level of the ordinal outcome variable.

The Wald test is conducted on the comparison of the proportional odds and
generalized models. A Wald test is a hypothesis test of the significance of
the difference in model coefficients, producing a chi-square statistic. A low
p-value in a Brant-Wald test is an indicator that the coefficient does not
satisfy the proportional odds assumption. The brant package in R provides an
implementation of the Brant-Wald test, and in this case supports our judgment
that the proportional odds assumption holds.

158 7 Proportional Odds Logistic Regression for Ordered Category Outcomes

library(brant)
brant::brant(model)

--
Test for X2 df probability
--
Omnibus 14.16 8 0.08
n_yellow_25 0.24 1 0.62
n_red_25 1.83 1 0.18
positionM 1.7 1 0.19
positionS 2.33 1 0.13
countryGermany 0.04 1 0.85
level2 0.13 1 0.72
resultL 1.53 1 0.22
resultW 1.3 1 0.25
--
##
H0: Parallel Regression Assumption holds

A p-value of less than 0.05 on this test—particularly on the Omnibus plus at
least one of the variables—should be interpreted as a failure of the proportional
odds assumption.

7.3.3 Alternatives to proportional odds models

The proportional odds model is by far the most utilized approach to modeling
ordinal outcomes (not least because of neglect in the testing of the underlying
assumptions). But as we have learned, it is not always an appropriate model
choice for ordinal outcomes. When the test of proportional odds fails, we need
to consider a strategy for remodeling the data. If only one or two variables
fail the test of proportional odds, a simple option is to remove those variables.
Whether or not we are comfortable doing this will depend very much on the
impact on overall model fit.

In the event where the option to remove variables is unattractive, alternative
models for ordinal outcomes should be considered. The most common alter-
natives (which we will not cover in depth here, but are explored in Agresti
(2010)) are:

• Baseline logistic model. This model is the same as the multinomial regression
model covered in the previous chapter, using the lowest ordinal value as the
reference.

7.4 Learning exercises 159

• Adjacent-category logistic model. This model compares each level of the
ordinal variable to the next highest level, and it is a constrained version
of the baseline logistic model. The brglm2 package in R offers a function
bracl() for calculating an adjacent category logistic model.

• Continuation-ratio logistic model. This model compares each level of the
ordinal variable to all lower levels. This can be modeled using binary logistic
regression techniques, but new variables need to be constructed from the
data set to allow this. The R package rms has a function cr.setup() which
is a utility for preparing an outcome variable for a continuation ratio model.

7.4 Learning exercises

7.4.1 Discussion questions

1. Describe what is meant by an ordinal variable.
2. Describe how an ordinal variable can be represented using a latent

continuous variable.
3. Describe the series of binomial logistic regression models that are

components of a proportional odds regression model. What can you
say about their coefficients?

4. If 𝑦 is an ordinal outcome variable with at least three levels, and if
𝑥 is an input variable that has coefficient 𝛽 in a proportional odds
logistic regression model, describe how to interpret the odds ratio
𝑒𝛽.

5. Describe some approaches for assessing the fit and goodness-of-fit
of an ordinal logistic regression model.

6. Describe how you would use stratified binomial logistic regression
models to validate the key assumption for a proportional odds
model.

7. Describe a statistical significance test that can support or reject the
hypothesis that the proportional odds assumption holds.

8. Describe some possible options for situations where the proportional
odds assumption is violated.

160 7 Proportional Odds Logistic Regression for Ordered Category Outcomes

7.4.2 Data exercises

Load the managers data set via the peopleanalyticsdata package or download
it from the internet3. It is a set of information of 571 managers in a sales
organization and consists of the following fields:

• employee_id for each manager
• performance_group of each manager in a recent performance review: Bottom

performer, Middle performer, Top performer
• yrs_employed: total length of time employed in years
• manager_hire: whether or not the individual was hired directly to be a man-

ager (Y) or promoted to manager (N)
• test_score: score on a test given to all managers
• group_size: the number of employees in the group they are responsible for
• concern_flag: whether or not the individual has been the subject of a com-

plaint by a member of their group
• mobile_flag: whether or not the individual works mobile (Y) or in the office

(N)
• customers: the number of customer accounts the manager is responsible for
• high_hours_flag: whether or not the manager has entered unusually high

hours into their timesheet in the past year
• transfers: the number of transfer requests coming from the manager’s group

while they have been a manager
• reduced_schedule: whether the manager works part time (Y) or full time

(N)
• city: the current office of the manager.

Construct a model to determine how the data provided may help explain the
performance_group of a manager by following these steps:

1. Convert the outcome variable to an ordered factor of increasing
performance.

2. Convert input variables to categorical factors as appropriate.
3. Perform any exploratory data analysis that you wish to do.
4. Run a proportional odds logistic regression model against all rele-

vant input variables.
5. Construct p-values for the coefficients and consider how to simplify

the model to remove variables that do not impact the outcome.
6. Calculate the odds ratios for your simplified model and write an

interpretation of them.
7. Estimate the fit of the simplified model using a variety of metrics

and perform tests to determine if the model is a good fit for the
data.

3http://peopleanalytics-regression-book.org/data/managers.csv

http://peopleanalytics-regression-book.org/

7.4 Learning exercises 161

8. Construct new outcome variables and use a stratified binomial ap-
proach to determine if the proportional odds assumption holds for
your simplified model. Are there any input variables for which you
may be concerned that the assumption is violated? What would you
consider doing in this case?

9. Use the Brant-Wald test to support or reject the hypothesis that
the proportional odds assumption holds for your simplified model.

10. Write a full report on your model intended for an audience of people
with limited knowledge of statistics.

http://taylorandfrancis.com

8
Modeling Explicit and Latent Hierarchy in
Data

So far in this book we have learned all of the most widely used and founda-
tional regression techniques for inferential modeling. Starting with this chap-
ter, we will look at situations where we need to adapt or combine techniques
to address certain inference goals or data characteristics. In this chapter we
look at some situations where data has a hierarchy and where we wish to
consider this hierarchy in our modeling efforts.

It is very often the case that data has an explicit hierarchy. For example,
each observation in our data may refer to a different individual and each
such individual may be a member of a few different groups. Similarly, each
observation might refer to an event involving an individual, and we may have
data on multiple events for the same individual. For a particular problem that
we are modeling, we may wish to take into consideration the effect of the
hierarchical grouping. This requires a model which has a mixture of random
effects and fixed effects—called a mixed model.

Separately, it can be the case that data we are given could have a latent
hierarchy. The input variables in the data might be measures of a smaller
set of higher-level latent constructs, and we may have a more interpretable
model if we hypothesize, confirm and model those latent constructs against
our outcome of interest rather than using a larger number of explicit input
variables. Latent variable modeling is a common technique to address this
situation, and in this chapter we will review a form of latent variable modeling
called structural equation modeling, which is very effective especially in making
inferences from survey instruments with large numbers of items.

These topics are quite broad, and there are many different approaches, tech-
niques and terms involved in mixed modeling and latent variable modeling. In
this chapter we will only cover some of the simpler approaches, which would
suffice for the majority of common situations in people analytics. For a deeper
treatment of these topics, see Jiang (2007) for mixed models and Bartholomew,
Knott, and Moustaki (2011) or Skrondal and Rabe-Hesketh (2004) for latent
variable models.

DOI: 10.1201/9781003194156-8 163

https://doi.org/10.1201/9781003194156-8

164 8 Modeling Explicit and Latent Hierarchy in Data

8.1 Mixed models for explicit hierarchy in data

The most common explicit hierarchies that we see in data are group-based and
time-based. A group-based hierarchy occurs when we are taking observations
that belong to different groups. For example, in our first walkthrough example
in Chapter 4, we modeled final examination performance against examination
performance for the previous three years. In this case we considered each
student observation to be independent and identically distributed, and we ran
a linear regression model on all the students. If we were to receive additional
information that these students were actually a mix of students in different
degree programs, then we may wish to take this into account in how we model
the problem—that is, we would want to assume that each student observation
is only independent and identically distributed within each degree program.

Similarly, a time-based hierarchy occurs when we have multiple observations of
the same subject taken at different times. For example, if we are conducting
a weekly survey on the same people over the course of a year, and we are
modeling how answers to some questions might depend on answers to others,
we may wish to consider the effect of the person on this model.

Both of these situations introduce a new grouping variable into the problem
we are modeling, thus creating a hierarchy. It is not hard to imagine that
analyzing each group may produce different statistical properties compared
to analyzing the entire population—for example, there could be correlations
between the data inside groups which are less evident when looking at the
overall population. Therefore in some cases a model may provide more useful
inferences if this grouping is taken into account.

8.1.1 Fixed and random effects

Let’s imagine that we have a set of observations consisting of a continuous
outcome variable 𝑦 and input variables 𝑥1, 𝑥2, … , 𝑥𝑝. Let’s also assume that
we have an additional data point for each observation where we assign it to
a group 𝐺. We are asked to determine the relationship between the outcome
and the input variables. One option is to develop a linear model 𝑦 = 𝛽0 +
𝛽1𝑥1 + ⋯ + 𝛽𝑝𝑥𝑝 + 𝜖, ignoring the group data. In this model, we assume that
the coefficients all have a fixed effect on the input variables—that is, they act
on every observation in the same way. This may be fine if there is trust that
group membership is unlikely to have any impact on the relationship being
modeled, or if we are comfortable making inferences about variables at the
observation level only.

8.1 Mixed models for explicit hierarchy in data 165

If, however, there is a belief that group membership may have an effect on
the relationship being modeled, and if we are interested in interpreting our
model at the group and observation level, then we need to adjust our model
to a mixed model for more accurate and reliable inference. The most common
adjustment is a random intercept. In this situation, we imagine that group
membership has an effect on the ‘starting point’ of the relationship: the inter-
cept. Therefore, for a given observation 𝑦 = 𝛼𝐺 + 𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑝𝑥𝑝 + 𝜖,
where 𝛼𝐺 is a random effect with a mean of zero associated with the group
that the observation is a member of. This can be restated as:

𝑦 = 𝛽𝐺 + 𝛽1𝑥1 + ⋯ + 𝛽𝑝𝑥𝑝 + 𝜖

where 𝛽𝐺 = 𝛼𝐺 + 𝛽0, which is a random intercept with a mean of 𝛽0.

This model is very similar to a standard linear regression model, except in-
stead of having a fixed intercept, we have an intercept that varies by group.
Therefore, we will essentially have two ‘levels’ in our model: one at the obser-
vation level to describe 𝑦 and one at the group level to describe 𝛽𝐺. For this
reason mixed models are sometimes known as multilevel models.

It is not too difficult to see how this approach can be extended. For example,
suppose that we believe the groups also have an effect on the coefficient of the
input variable 𝑥1 as well as the intercept. Then

𝑦 = 𝛽𝐺0 + 𝛽𝐺1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑝𝑥𝑝

where 𝛽𝐺0 is a random intercept with a mean of 𝛽0, and 𝛽𝐺1 is a random slope
with a mean of 𝛽1. In this case, a mixed model would return the estimated
coefficients at the observation level and the statistics for the random effects
𝛽𝐺0 and 𝛽𝐺1 at the group level.

Finally, our model does not need to be linear for this to apply. This approach
also extends to logistic models and other generalized linear models. For exam-
ple, if 𝑦 was a binary outcome variable and our model was a binomial logistic
regression model, our last equation would translate to

ln (𝑃(𝑦 = 1)
𝑃(𝑦 = 0)) = 𝛽𝐺0 + 𝛽𝐺1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑝𝑥𝑝

8.1.2 Running a mixed model

Let’s look at a fun and straightforward example of how mixed models can
be useful. The speed_dating data set is a set of information captured during
experiments with speed dating by students at Columbia University in New

166 8 Modeling Explicit and Latent Hierarchy in Data

York1. Each row represents one meeting between an individual and a partner
of the opposite sex. The data contains the following fields:

• iid is an id number for the individual.
• gender is the gender of the individual with 0 as Female and 1 as Male.
• match indicates that the meeting resulted in a match.
• samerace indicates that both the individual and the partner were of the same

race.
• race is the race of the individual, with race coded as follows: Black/African

American=1, European/Caucasian-American=2, Latino/Hispanic Ameri-
can=3, Asian/Pacific Islander/Asian-American=4, Native American=5,
Other=6.

• goal is the reason why the individual is participating in the event, coded
as follows: Seemed like a fun night out=1, To meet new people=2, To get a
date=3, Looking for a serious relationship=4, To say I did it=5, Other=6.

• dec is a binary rating from the individual as to whether they would like to
see their partner again (1 is Yes and 0 is No).

• attr is the individual’s rating out of 10 on the attractiveness of the partner.
• intel is the individual’s rating out of 10 on the intelligence level of the

partner.
• prob is the individual’s rating out of 10 on whether they believe the partner

will want to see them again.
• agediff is the absolute difference in the ages of the individual and the part-

ner.

This data can be explored in numerous ways, but we will focus here on mod-
eling options. We are interested in the binary outcome dec (the decision of
the individual), and we would like to understand how it relates to the age
difference, the racial similarity and the ratings on attr, intel and prob. First,
let’s assume that we don’t care about how an individual makes up their mind
about their speed date, and that we are only interested in the dynamics of
speed date decisions. Then we would simply run a binomial logistic regression
on our data set, ignoring iid and other grouping variables like race, goal and
gender.

if needed, get data
url <- "http://peopleanalytics-regression-book.org/data/speed_dating.csv"
speed_dating <- read.csv(url)

1I have simplified the data set, and the full version can be found at http://www.stat.col
umbia.edu/~gelman/arm/examples/speed.dating/

http://www.stat.columbia.edu/
http://www.stat.columbia.edu/

8.1 Mixed models for explicit hierarchy in data 167

run standard binomial model
model <- glm(dec ~ agediff + samerace + attr + intel + prob,

data = speed_dating,
family = "binomial")

summary(model)

##
Call:
glm(formula = dec ~ agediff + samerace + attr + intel + prob,
family = "binomial", data = speed_dating)
##
Deviance Residuals:
Min 1Q Median 3Q Max
-2.6497 -0.8514 -0.3477 0.8809 2.8871
##
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -5.812900 0.184340 -31.534 <2e-16 ***
agediff -0.010518 0.009029 -1.165 0.2440
samerace -0.093422 0.055710 -1.677 0.0936 .
attr 0.661139 0.019382 34.111 <2e-16 ***
intel -0.004485 0.020763 -0.216 0.8290
prob 0.270553 0.014565 18.575 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
(Dispersion parameter for binomial family taken to be 1)
##
Null deviance: 10647.3 on 7788 degrees of freedom
Residual deviance: 8082.9 on 7783 degrees of freedom
(589 observations deleted due to missingness)
AIC: 8094.9
##
Number of Fisher Scoring iterations: 5

In general, we see that the factors which significantly influence the speed
dating decision seem to be the attractiveness of the partner and the feeling
of reciprocation of interest from the partner, and that age difference, racial
similarity and intelligence do not seem to play a significant role at the level
of the speed date itself.

Now let’s say that we are interested in how a given individual weighs up
these factors in coming to a decision. Different individuals may have different

168 8 Modeling Explicit and Latent Hierarchy in Data

ingoing criteria for making speed dating decisions. As a result, each individual
may have varying base likelihoods of a positive decision, and each individual
may be affected by the input variables in different ways as they come to
their decision. Therefore we will need to assign random effects for individuals
based on iid. The lme4 package in R contains functions for performing mixed
linear regression models and mixed generalized linear regression models. These
functions take formulas with additional terms to define the random effects to
be estimated. The function for a linear model is lmer() and for a generalized
linear model is glmer().

In the simple case, let’s assume that each individual has a different ingoing
base likelihood of making a positive decision on a speed date. We will therefore
model a random intercept according to the iid of the individual. Here we
would use the formula dec ~ agediff + samerace + attr + intel + prob +
(1 | iid), where (1 | iid) means ‘a random effect for iid on the intercept
of the model.’

run binomial mixed effects model
library(lme4)

iid_intercept_model <- lme4:::glmer(
dec ~ agediff + samerace + attr + intel + prob + (1 | iid),
data = speed_dating,
family = "binomial"

)

view summary without correlation table of fixed effects
summary(iid_intercept_model,

correlation = FALSE)

Generalized linear mixed model fit by maximum likelihood ['']
Family: binomial (logit)
Formula: dec ~ agediff + samerace + attr + intel + prob + (1 | iid)
Data: speed_dating
##
AIC BIC logLik deviance df.resid
6420.3 6469.0 -3203.1 6406.3 7782
##
Scaled residuals:
Min 1Q Median 3Q Max
-25.6965 -0.3644 -0.0606 0.3608 25.0368
##
Random effects:

8.1 Mixed models for explicit hierarchy in data 169

Groups Name Variance Std.Dev.
iid (Intercept) 5.18 2.276
Number of obs: 7789, groups: iid, 541
##
Fixed effects:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -12.88882 0.42143 -30.583 < 2e-16 ***
agediff -0.03671 0.01401 -2.621 0.00877 **
samerace 0.20187 0.08139 2.480 0.01313 *
attr 1.07894 0.03334 32.363 < 2e-16 ***
intel 0.31592 0.03473 9.098 < 2e-16 ***
prob 0.61998 0.02873 21.581 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We can see the two levels of results in this summary. The fixed effects level
gives the the coefficients of the model at an observation (speed date) level,
and the random effects tell us how the intercept (or base likelihood) of that
model can vary according to the individual. We see that there is considerable
variance in the intercept from individual to individual, and taking this into
account, we now see that the decision of an individual on a given date is
significantly influenced by all the factors in this model. If we had stuck with
the simple binomial model, the effects of age difference, racial similarity and
intelligence at an individual level would have gotten lost, and we could have
reached the erroneous conclusion that none of these really matter in speed
dating.

To illustrate this graphically, Figure 8.1 shows the speed_dating data for a
subset of the three individuals with IIDs 252, 254 and 256. The curve repre-
sents a plain binomial logistic regression model fitted on the attr and prob
input variables, irrelevant of the IID of the individual.

Figure 8.2 shows the three separate curves for each IID generated by a mixed
binomial logistic regression model with a random intercept fitted on the same
two input variables. Here, we can see that different individuals process the
two inputs in their decision making in different ways, leading to different in-
dividual formulas which determine the likelihood of a positive decision. While
a plain binomial regression model will find the best single formula from the
data irrelevant of the individual, a mixed model allows us to take these dif-
ferent individual formulas into account in determining the effects of the input
variables.

If we believe that different individuals are influenced differently by one or
more of the various decision factors they consider during a speed date, we can
extend our random effects to the slope coefficients of our model. For example
we could use (1 + agediff | iid) to model a random effect of iid on the

170 8 Modeling Explicit and Latent Hierarchy in Data

FIGURE 8.1: 3D visualization of the fitted plain binomial model against a
subset of the speed_dating data for three specific iids

intercept and the agediff coefficient. Similarly, if we wanted to consider two
grouping variables—like iid and goal—on the intercept, we could add both
(1 | iid) and (1 | goal) to our model formula.

8.2 Structural equation models for latent hierarchy in
data

In this section we will focus entirely on survey data use cases, as this is the
most common application of structural equation modeling in people analyt-
ics. However it should be noted that survey data is not the only situation
where latent variables may be modeled, and this technology has substantially
broader applications. Indeed, advanced practitioners may see opportunities to
experiment with this technology in other use cases.

It is a frequent occurrence with surveys conducted on large samples of peo-
ple, such as a public survey or a large company survey, that attempts to

8.2 Structural equation models for latent hierarchy in data 171

FIGURE 8.2: 3D visualization of the individual-level binomial models cre-
ated by iid_intercept_model against a subset of the speed_dating data for
three specific iids

run regression models can be problematic due to the large number of survey
questions or items. Often many of the items are highly correlated, and even
if they were not, high dimensionality makes interpretability very challenging.
Decision-makers are not usually interested in explanations that involve 50 or
100 variables.

Usually, such a large number of survey items are not each independently mea-
suring a different construct. Many of the items can be considered to be ad-
dressing similar thematic constructs. For example, the items ‘I believe I am
compensated well’ and ‘I am happy with the benefits offered by my employer’
could both be considered to be related to employee rewards. In some cases,
survey instruments can be explicitly constructed around these themes, and in
other cases, surveys have grown organically over time to include a disorganized
set of items that could be grouped into themes after the fact.

It is a common request for an analyst to model a certain outcome using the
many items in a complex survey as input variables. In some cases the outcome
being modeled is an item in the survey itself—usually some overall measure
of sentiment—or in other cases the outcome could be independent of the
survey instrument, for example future attrition from the organization. In this

172 8 Modeling Explicit and Latent Hierarchy in Data

situation, a model using the themes as input variables is likely to be a lot more
useful and interpretable than a model using the items as input variables.

Structural equation modeling is a technique that allows an analyst to hypoth-
esize a smaller set of latent variables or factors that explain the responses
to the survey items themselves (the ‘measured variables’), and then regresses
the outcome of interest against these latent factors. It is a two-part approach,
each part being a separate model in and of itself, as follows:

1. Measurement model: This is focused on how well the hypothesized
factors explain the responses to the survey items using a technique
called factor analysis. In the most common case, where a subject
matter expert has pre-organized the items into several groups cor-
responding to hypothesized latent variables, the process is called
confirmatory factor analysis, and the objective is to confirm that
the groupings represent a high-quality measurement model, adjust-
ing as necessary to refine the model. In the simplest case, items are
fitted into separate independent themes with no overlap.

2. Structural model: Assuming a satisfactory measurement model, the
structural model is effectively a regression model which explains
how each of the proposed factors relate to the outcome of interest.

As a walkthrough example, we will work with the politics_survey data set.

if needed, get data
url <- "http://peopleanalytics-regression-book.org/data/politics_survey.csv"
politics_survey <- read.csv(url)

This data set represents the results of a survey conducted by a political party
on a set of approximately 2100 voters. The results are on a Likert scale of 1 to
4 where 1 indicates strong negative sentiment with a statement and 4 indicates
strong positive sentiment. Subject matter experts have already grouped the
items into proposed latent variables or factors, and the data takes the following
form:

1. Overall represents the overall intention to vote for the party in the
next election.

2. Items beginning with Pol are considered to be related to the policies
of the political party.

3. Items beginning with Hab are considered to be related to prior voting
habits in relation to the political party.

4. Items beginning with Loc are considered to be related to interest in
local issues around where the respondent resided.

5. Items beginning with Env are considered to be related to interest in
environmental issues.

8.2 Structural equation models for latent hierarchy in data 173

6. Items beginning with Int are considered to be related to interest in
international issues.

7. Items beginning with Pers are considered to be related to the per-
sonalities of the party representatives/leaders.

8. Items beginning with Nat are considered to be related to interest in
national issues.

9. Items beginning with Eco are considered to be related to interest in
economic issues.

This is a lot of data so let’s just take a quick look at the first few rows and
columns.

head(politics_survey[,1:7])

Overall Pol1 Pol2 Pol3 Hab1 Hab2 Hab3
1 3 2 2 2 2 2 2
2 4 4 4 4 4 4 4
3 4 4 4 4 3 2 2
4 3 4 4 4 3 2 2
5 3 3 3 4 4 3 3
6 4 3 3 4 3 2 3

The outcome of interest here is the Overall rating. Our first aim is to confirm
that the eight factors suggested by the subject matter experts represent a
satisfactory measurement model (that they reasonably explain the responses
to the 22 items), adjusting or refining if needed. Assuming we can confirm a
satisfactory measurement model, our second aim is to run a structural model
to determine how each factor relates to the overall intention to vote for the
party in the next election.

8.2.1 Running and assessing the measurement model

The proposed measurement model can be seen in Figure 8.3. In this path
diagram, we see the eight latent variables or factors (circles) and how they
map to the individual measured items (squares) in the survey using single
headed arrows. Here we are making a simplifying assumption that each latent
variable influences an independent group of survey items. The diagram also
notes that the latent variables may be correlated with each other, as indicated
by the double-headed arrows at the top. Dashed-line paths indicate that a
specific item will be used to scale the variance of the latent factor.

174 8 Modeling Explicit and Latent Hierarchy in Data

Pol1 Pol2 Pol3Hab1Hab2Hab3Loc1 Loc2 Loc3Env1Env2 Int1 Int2 Pers1Pers2Pers3Nat1 Nat2 Nat3Eco1Eco2

Pol Hab Loc Env Int Pers Nat Eco

FIGURE 8.3: Simple path diagram showing proposed measurement model
for politics_survey

The lavaan package in R is a specialized package for running analysis on
latent variables. The function cfa() can be used to perform a confirmatory
factor analysis on a specified measurement model. The measurement model
can be specified using an appropriately commented and formatted text string
as follows. Note the =~ notation, and note also that each factor is defined on
a new line.

define measurement model

meas_mod <- "
measurement model
Pol =~ Pol1 + Pol2 + Pol3
Hab =~ Hab1 + Hab2 + Hab3
Loc =~ Loc1 + Loc2 + Loc3
Env =~ Env1 + Env2
Int =~ Int1 + Int2
Pers =~ Pers1 + Pers2 + Pers3
Nat =~ Nat1 + Nat2 + Nat3
Eco =~ Eco1 + Eco2
"

With the measurement model defined, the confirmatory factor analysis can
be run and a summary viewed. The lavaan summary functions used in this

8.2 Structural equation models for latent hierarchy in data 175

section produce quite large outputs spanning several pages. We will proceed to
highlight which parts of this output are important in interpreting and refining
the model.

library(lavaan)

cfa_meas_mod <- lavaan::cfa(model = meas_mod, data = politics_survey)
lavaan::summary(cfa_meas_mod, fit.measures = TRUE, standardized = TRUE)

lavaan 0.6-7 ended normally after 108 iterations
##
Estimator ML
Optimization method NLMINB
Number of free parameters 70
##
Number of observations 2108
##
Model Test User Model:
##
Test statistic 838.914
Degrees of freedom 161
P-value (Chi-square) 0.000
##
Model Test Baseline Model:
##
Test statistic 17137.996
Degrees of freedom 210
P-value 0.000
##
User Model versus Baseline Model:
##
Comparative Fit Index (CFI) 0.960
Tucker-Lewis Index (TLI) 0.948
##
Loglikelihood and Information Criteria:
##
Loglikelihood user model (H0) -37861.518
Loglikelihood unrestricted model (H1) -37442.061
##
Akaike (AIC) 75863.036
Bayesian (BIC) 76258.780
Sample-size adjusted Bayesian (BIC) 76036.383
##

176 8 Modeling Explicit and Latent Hierarchy in Data

Root Mean Square Error of Approximation:
##
RMSEA 0.045
90 Percent confidence interval - lower 0.042
90 Percent confidence interval - upper 0.048
P-value RMSEA <= 0.05 0.998
##
Standardized Root Mean Square Residual:
##
SRMR 0.035
##
Parameter Estimates:
##
Standard errors Standard
Information Expected
Information saturated (h1) model Structured
##
Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
Pol =~
Pol1 1.000 0.568 0.772
Pol2 0.883 0.032 27.431 0.000 0.501 0.737
Pol3 0.488 0.024 20.575 0.000 0.277 0.512
Hab =~
Hab1 1.000 0.623 0.755
Hab2 1.207 0.032 37.980 0.000 0.752 0.887
Hab3 1.138 0.031 36.603 0.000 0.710 0.815
Loc =~
Loc1 1.000 0.345 0.596
Loc2 1.370 0.052 26.438 0.000 0.473 0.827
Loc3 1.515 0.058 26.169 0.000 0.523 0.801
Env =~
Env1 1.000 0.408 0.809
Env2 0.605 0.031 19.363 0.000 0.247 0.699
Int =~
Int1 1.000 0.603 0.651
Int2 1.264 0.060 20.959 0.000 0.762 0.869
Pers =~
Pers1 1.000 0.493 0.635
Pers2 1.048 0.041 25.793 0.000 0.517 0.770
Pers3 0.949 0.039 24.440 0.000 0.468 0.695
Nat =~
Nat1 1.000 0.522 0.759
Nat2 0.991 0.032 31.325 0.000 0.518 0.744
Nat3 0.949 0.035 27.075 0.000 0.495 0.638

8.2 Structural equation models for latent hierarchy in data 177

Eco =~
Eco1 1.000 0.525 0.791
Eco2 1.094 0.042 26.243 0.000 0.575 0.743
##
Covariances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
Pol ~~
Hab 0.165 0.011 14.947 0.000 0.466 0.466
Loc 0.106 0.007 15.119 0.000 0.540 0.540
Env 0.089 0.007 12.101 0.000 0.385 0.385
Int 0.146 0.012 12.248 0.000 0.425 0.425
Pers 0.162 0.010 15.699 0.000 0.577 0.577
Nat 0.177 0.010 17.209 0.000 0.596 0.596
Eco 0.150 0.010 15.123 0.000 0.504 0.504
Hab ~~
Loc 0.069 0.006 11.060 0.000 0.323 0.323
Env 0.051 0.007 7.161 0.000 0.200 0.200
Int 0.134 0.012 11.395 0.000 0.357 0.357
Pers 0.121 0.010 12.619 0.000 0.393 0.393
Nat 0.105 0.009 11.271 0.000 0.324 0.324
Eco 0.089 0.009 9.569 0.000 0.273 0.273
Loc ~~
Env 0.076 0.005 15.065 0.000 0.541 0.541
Int 0.091 0.007 12.192 0.000 0.438 0.438
Pers 0.098 0.007 14.856 0.000 0.574 0.574
Nat 0.116 0.007 16.780 0.000 0.642 0.642
Eco 0.090 0.006 14.354 0.000 0.496 0.496
Env ~~
Int 0.075 0.008 9.506 0.000 0.303 0.303
Pers 0.075 0.007 11.482 0.000 0.375 0.375
Nat 0.093 0.007 13.616 0.000 0.439 0.439
Eco 0.078 0.007 11.561 0.000 0.365 0.365
Int ~~
Pers 0.156 0.012 13.349 0.000 0.525 0.525
Nat 0.186 0.012 14.952 0.000 0.592 0.592
Eco 0.137 0.011 12.374 0.000 0.432 0.432
Pers ~~
Nat 0.185 0.010 17.898 0.000 0.717 0.717
Eco 0.153 0.010 15.945 0.000 0.590 0.590
Nat ~~
Eco 0.196 0.010 19.440 0.000 0.715 0.715
##
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.Pol1 0.219 0.012 19.015 0.000 0.219 0.404

178 8 Modeling Explicit and Latent Hierarchy in Data

.Pol2 0.211 0.010 21.455 0.000 0.211 0.457
.Pol3 0.216 0.007 29.384 0.000 0.216 0.737
.Hab1 0.293 0.011 25.855 0.000 0.293 0.430
.Hab2 0.153 0.011 14.434 0.000 0.153 0.213
.Hab3 0.254 0.012 21.814 0.000 0.254 0.335
.Loc1 0.217 0.007 29.063 0.000 0.217 0.645
.Loc2 0.103 0.006 18.226 0.000 0.103 0.316
.Loc3 0.153 0.007 20.463 0.000 0.153 0.358
.Env1 0.088 0.008 10.643 0.000 0.088 0.345
.Env2 0.064 0.003 18.407 0.000 0.064 0.511
.Int1 0.495 0.021 23.182 0.000 0.495 0.576
.Int2 0.188 0.025 7.653 0.000 0.188 0.244
.Pers1 0.361 0.013 27.065 0.000 0.361 0.597
.Pers2 0.184 0.009 20.580 0.000 0.184 0.408
.Pers3 0.234 0.009 24.865 0.000 0.234 0.517
.Nat1 0.201 0.009 23.320 0.000 0.201 0.425
.Nat2 0.215 0.009 24.119 0.000 0.215 0.446
.Nat3 0.357 0.013 27.981 0.000 0.357 0.593
.Eco1 0.165 0.010 16.244 0.000 0.165 0.374
.Eco2 0.268 0.013 20.071 0.000 0.268 0.448
Pol 0.323 0.018 18.035 0.000 1.000 1.000
Hab 0.389 0.020 19.276 0.000 1.000 1.000
Loc 0.119 0.009 13.906 0.000 1.000 1.000
Env 0.166 0.011 15.560 0.000 1.000 1.000
Int 0.364 0.026 13.846 0.000 1.000 1.000
Pers 0.243 0.017 14.619 0.000 1.000 1.000
Nat 0.273 0.015 18.788 0.000 1.000 1.000
Eco 0.276 0.015 17.974 0.000 1.000 1.000

This is a large set of results, but we can focus in on some important parameters
to examine. First, we note that the results did not come attached to a warning.
One particular warning to look out for relates to the covariance matrix being
non-positive definite. This renders some of the attempted measurement invalid
and is usually caused by too small a sample size for the complexity of the
measurement model. Since we did not receive this warning, we can proceed
safely.

Second, we examine the fit statistics. Numerous statistics are reported2, but
for larger samples such as this data set, the following measures should be
examined:

2Other reported measures include chi-square statistical tests of perfect fit for the mea-
surement model and for the baseline model, and AIC and BIC. While these generally are not
very helpful in determining the quality of a specific measurement model, they are valuable
for comparing different measurement model options.

8.2 Structural equation models for latent hierarchy in data 179

• CFI and TLI, which compare the proposed model to a baseline (null or
random) model to determine if it is better. Ideally we look for both of these
measures to exceed 0.95. We see that our measurement model comes very
close to meeting these criteria.

• RMSEA should ideally be less than 0.06, which is met by our measurement
model.

• SRMR should ideally be less than 0.08, which is met by our measurement
model.

Finally, the parameter estimates for the latent variables should be examined.
In particular the Std.all column which is similar to standardized regression
coefficients. These parameters are commonly knows as factor loadings—they
can be interpreted as the extent to which the item response is explained by
the proposed latent variable. In general, factor loadings of 0.7 or above are
considered reasonable. Factor loadings less than this may be introducing un-
acceptable measurement error. One option if this occurs is to drop the item
completely from the measurement model, or to explore an alternative measure-
ment model with the item assigned to another latent variable. In any case the
analyst will need to balance these considerations against the need to have fac-
tors measured against multiple items wherever possible in order to minimize
other aspects of measurement error.

In our case we could consider dropping Pol3, Loc1, Pers1 and Nat3 from the
measurement model as they have factor loadings of less than 0.7 and are in
factors that contain three items. We will fit this revised measurement model,
and rather than printing the entire output again, we will focus here on our
CFI, TLI, RMSEA and SRMR statistics to see if they have improved. It is
advisable, however, that factor loadings are also checked, especially where
primary items that scale the variance of latent factors have been removed.

meas_mod_revised <- "
measurement model
Pol =~ Pol1 + Pol2
Hab =~ Hab1 + Hab2 + Hab3
Loc =~ Loc2 + Loc3
Env =~ Env1 + Env2
Int =~ Int1 + Int2
Pers =~ Pers2 + Pers3
Nat =~ Nat1 + Nat2
Eco =~ Eco1 + Eco2
"

cfa_meas_mod_rev <- lavaan::cfa(model = meas_mod_revised,
data = politics_survey)

180 8 Modeling Explicit and Latent Hierarchy in Data

fits <- lavaan::fitmeasures(cfa_meas_mod_rev)

fits[c("cfi", "tli", "rmsea", "srmr")]

cfi tli rmsea srmr
0.97804888 0.96719394 0.03966962 0.02736629

We now see that our measurement model comfortably meets all fit require-
ments. In our case we chose to completely drop four items from the model.
Analysts may wish to experiment with relaxing criteria on dropping items, or
on reassigning items to other factors to achieve a good balance between fit
and factor measurement reliability.

8.2.2 Running and interpreting the structural model

With a satisfactory measurement model, the structural model is a simple
regression formula. The sem() function in lavaan can be used to perform a full
structural equation model including the measurement model and structural
model. Like for cfa(), an extensive output can be expected from this function,
but assuming that our measurement model is satisfactory, our key interest is
now in the structural model elements of this output.

define full SEM using revised measurement model
full_sem <- "
measurement model
Pol =~ Pol1 + Pol2
Hab =~ Hab1 + Hab2 + Hab3
Loc =~ Loc2 + Loc3
Env =~ Env1 + Env2
Int =~ Int1 + Int2
Pers =~ Pers2 + Pers3
Nat =~ Nat1 + Nat2
Eco =~ Eco1 + Eco2

structural model
Overall ~ Pol + Hab + Loc + Env + Int + Pers + Nat + Eco
"

run full SEM
full_model <- lavaan::sem(model = full_sem, data = politics_survey)
lavaan::summary(full_model, standardized = TRUE)

8.2 Structural equation models for latent hierarchy in data 181

lavaan 0.6-7 ended normally after 99 iterations
##
Estimator ML
Optimization method NLMINB
Number of free parameters 71
##
Number of observations 2108
##
Model Test User Model:
##
Test statistic 465.318
Degrees of freedom 100
P-value (Chi-square) 0.000
##
Parameter Estimates:
##
Standard errors Standard
Information Expected
Information saturated (h1) model Structured
##
Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
Pol =~
Pol1 1.000 0.626 0.850
Pol2 0.714 0.029 25.038 0.000 0.447 0.657
Hab =~
Hab1 1.000 0.630 0.763
Hab2 1.184 0.031 38.592 0.000 0.746 0.879
Hab3 1.127 0.030 37.058 0.000 0.710 0.816
Loc =~
Loc2 1.000 0.461 0.806
Loc3 1.179 0.036 32.390 0.000 0.544 0.833
Env =~
Env1 1.000 0.411 0.815
Env2 0.596 0.031 19.281 0.000 0.245 0.695
Int =~
Int1 1.000 0.605 0.653
Int2 1.256 0.062 20.366 0.000 0.760 0.867
Pers =~
Pers2 1.000 0.520 0.774
Pers3 0.939 0.036 25.818 0.000 0.488 0.726
Nat =~
Nat1 1.000 0.511 0.742
Nat2 1.033 0.034 29.958 0.000 0.527 0.758
Eco =~

182 8 Modeling Explicit and Latent Hierarchy in Data

Eco1 1.000 0.529 0.797
Eco2 1.078 0.042 25.716 0.000 0.570 0.737
##
Regressions:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
Overall ~
Pol 0.330 0.036 9.281 0.000 0.206 0.307
Hab 0.255 0.024 10.614 0.000 0.161 0.240
Loc 0.224 0.047 4.785 0.000 0.103 0.154
Env -0.114 0.042 -2.738 0.006 -0.047 -0.070
Int 0.046 0.028 1.605 0.108 0.028 0.041
Pers 0.112 0.047 2.383 0.017 0.058 0.087
Nat 0.122 0.071 1.728 0.084 0.063 0.093
Eco 0.002 0.043 0.041 0.967 0.001 0.001
##
Covariances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
Pol ~~
Hab 0.183 0.012 15.476 0.000 0.465 0.465
Loc 0.156 0.009 16.997 0.000 0.540 0.540
Env 0.096 0.008 12.195 0.000 0.374 0.374
Int 0.162 0.013 12.523 0.000 0.427 0.427
Pers 0.171 0.011 15.975 0.000 0.525 0.525
Nat 0.195 0.011 17.798 0.000 0.610 0.610
Eco 0.167 0.011 15.752 0.000 0.506 0.506
Hab ~~
Loc 0.091 0.008 11.218 0.000 0.315 0.315
Env 0.052 0.007 7.199 0.000 0.200 0.200
Int 0.138 0.012 11.426 0.000 0.361 0.361
Pers 0.112 0.010 11.484 0.000 0.341 0.341
Nat 0.105 0.010 11.045 0.000 0.327 0.327
Eco 0.091 0.009 9.608 0.000 0.273 0.273
Loc ~~
Env 0.103 0.006 16.413 0.000 0.544 0.544
Int 0.120 0.010 12.529 0.000 0.429 0.429
Pers 0.130 0.008 16.209 0.000 0.542 0.542
Nat 0.153 0.008 18.203 0.000 0.648 0.648
Eco 0.117 0.008 14.985 0.000 0.479 0.479
Env ~~
Int 0.075 0.008 9.505 0.000 0.303 0.303
Pers 0.075 0.007 11.058 0.000 0.351 0.351
Nat 0.091 0.007 13.181 0.000 0.434 0.434
Eco 0.079 0.007 11.583 0.000 0.364 0.364
Int ~~
Pers 0.153 0.012 13.118 0.000 0.486 0.486

8.2 Structural equation models for latent hierarchy in data 183

Nat 0.173 0.012 14.159 0.000 0.560 0.560
Eco 0.138 0.011 12.293 0.000 0.431 0.431
Pers ~~
Nat 0.192 0.010 18.922 0.000 0.724 0.724
Eco 0.156 0.010 16.369 0.000 0.567 0.567
Nat ~~
Eco 0.192 0.010 18.968 0.000 0.710 0.710
##
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.Pol1 0.150 0.013 11.205 0.000 0.150 0.277
.Pol2 0.263 0.010 25.479 0.000 0.263 0.569
.Hab1 0.285 0.011 25.570 0.000 0.285 0.418
.Hab2 0.163 0.010 15.746 0.000 0.163 0.227
.Hab3 0.253 0.011 22.046 0.000 0.253 0.334
.Loc2 0.114 0.006 18.168 0.000 0.114 0.350
.Loc3 0.130 0.008 15.729 0.000 0.130 0.306
.Env1 0.085 0.008 10.227 0.000 0.085 0.336
.Env2 0.064 0.003 18.701 0.000 0.064 0.518
.Int1 0.492 0.022 22.597 0.000 0.492 0.574
.Int2 0.192 0.025 7.547 0.000 0.192 0.249
.Pers2 0.181 0.010 17.472 0.000 0.181 0.401
.Pers3 0.215 0.010 21.151 0.000 0.215 0.474
.Nat1 0.213 0.009 22.690 0.000 0.213 0.450
.Nat2 0.205 0.010 21.502 0.000 0.205 0.425
.Eco1 0.160 0.010 15.413 0.000 0.160 0.364
.Eco2 0.273 0.014 20.156 0.000 0.273 0.457
.Overall 0.242 0.008 29.506 0.000 0.242 0.537
Pol 0.392 0.020 19.235 0.000 1.000 1.000
Hab 0.397 0.020 19.581 0.000 1.000 1.000
Loc 0.213 0.011 19.724 0.000 1.000 1.000
Env 0.169 0.011 15.606 0.000 1.000 1.000
Int 0.366 0.027 13.699 0.000 1.000 1.000
Pers 0.270 0.015 17.514 0.000 1.000 1.000
Nat 0.261 0.015 17.787 0.000 1.000 1.000
Eco 0.280 0.016 17.944 0.000 1.000 1.000

The Std.all column of the Regressions section of the output provides the
fundamentals of the structural model—these are standardized estimates which
can be approximately interpreted as the proportion of the variance of the
outcome that is explained by each factor. Here we can make the following
interpretations:

1. Policies, habit and interest in local issues represent the three
strongest drivers of likelihood of voting for the party at the next

184 8 Modeling Explicit and Latent Hierarchy in Data

election, and explain approximately 70% of the overall variance in
the outcome.

2. Interest in national or international issues, and interest in the econ-
omy each have no significant relationship with likelihood to vote for
the party at the next election.

3. Interest in the environment has a significant negative relationship
with likelihood to vote for the party at the next election.

0.850.66 0.760.880.82 0.810.83 0.820.69 0.650.87 0.770.73 0.740.76 0.800.74

0.31 0.24 0.15 -0.07 0.04 0.09 0.09 0.00

0.46 0.54 0.37 0.43 0.52 0.61 0.51

0.31 0.20 0.36 0.34 0.33 0.27

0.54 0.43 0.54 0.65 0.48
0.30 0.35 0.43 0.36

0.49 0.56 0.43
0.72 0.57 0.71

Pol1 Pol2 Hab1 Hab2 Hab3 Loc2 Loc3 Env1 Env2 Int1 Int2 Pers2 Pers3 Nat1 Nat2 Eco1 Eco2

Overall

Pol Hab Loc Env Int Pers Nat Eco

FIGURE 8.4: Path diagram for full structural equation model on poli-
tics_survey

The full structural equation model can be seen in Figure 8.4. This simple
example illustrates the value of structural equation modeling in both reduc-
ing the dimensions of a complex regression problem and in developing more
intuitive and interpretable results for stakeholders. The underlying theory of
latent variable modeling, and its implementation in the lavaan package, offer
much more flexibility and parameter control options than illustrated here and
further exploration is highly recommended. Bartholomew, Knott, and Mous-
taki (2011) and Skrondal and Rabe-Hesketh (2004) are excellent resources for
a deeper study of the theory and a wider range of case examples.

8.3 Learning exercises 185

8.3 Learning exercises

8.3.1 Discussion questions

1. Describe some common forms of explicit hierarchies in data. Can
you think of some data sets that you have worked with recently that
contain an explicit hierarchy?

2. Describe the meaning of ‘fixed effect’ and ‘random effect’ in a mixed
regression model.

3. Which parameter in a mixed regression model is most commonly
used when applying a random effect?

4. Describe why mixed models are sometimes referred to as multilevel
models.

5. In a two-level mixed model, describe the two levels of statistics that
are produced and how to interpret these statistics.

6. In latent variable modeling, what is the difference between a latent
variable and a measured variable?

7. Describe some reasons why latent variable modeling can be valuable
in practice.

8. Describe the two components of a structural equation model. What
is the purpose of each component?

9. What are the steps involved in a confirmatory factor analysis on a
sufficiently large data set? Describe some fit criteria and the ideal
standards for those criteria.

10. Describe a process for refining a factor analysis based on fit crite-
ria and factor loadings. What considerations should be addressed
during this process?

8.3.2 Data exercises

For Exercises 1–4, use the speed_dating set used earlier in this chapter3.

1. Split the data into two sets according to the gender of the partici-
pant. Run standard binomial logistic regression models on each set
to determine the relationship between the dec decision outcome and
the input variables samerace, agediff, attr, intel and prob.

2. Run similar mixed models on these sets with a random intercept for
iid.

3. What different conclusions can you make in comparing the mixed
models with the standard models?

3http://peopleanalytics-regression-book.org/data/speed_dating.csv

http://peopleanalytics-regression-book.org/

186 8 Modeling Explicit and Latent Hierarchy in Data

4. Experiment with some random slope effects to see if they reveal
anything new about the input variables.

For exercises 5–10, load the employee_survey data set via the peopleanalyt-
icsdata package or download it from the internet4. This data set contains the
results of an engagement survey of employees of a technology company. Each
row represents the responses of an individual to the survey and each column
represents a specific survey question, with responses on a Likert scale of 1
to 4, with 1 indicating strongly negative sentiment and 4 indicating strongly
positive sentiment. Subject matter experts have grouped the items into hy-
pothesized latent factors as follows:

• Happiness is an overall measure of the employees current sentiment about
their job.

• Items beginning with Ben relate to employment benefits.
• Items beginning with Work relate to the general work environment.
• Items beginning with Man relate to perceptions of management.
• Items beginning with Car relate to perceptions of career prospects.

5. Write out the proposed measurement model, defining the latent
factors in terms of the measured items.

6. Run a confirmatory factor analysis on the proposed measurement
model. Examine the fit and the factor loadings.

7. Experiment with the removal of measured items from the measure-
ment model in order to improve the overall fit.

8. Once satisfied with the fit of the measurement model, run a full
structural equation model on the data.

9. Interpret the results of the structural model. Which factors appear
most related to overall employee sentiment? Approximately what
proportion of the variance in overall sentiment does the model ex-
plain?

10. If you dropped measured items from your measurement model, ex-
periment with assigning them to other factors to see if this improves
the fit of the model. What statistics would you use to compare dif-
ferent measurement models?

4http://peopleanalytics-regression-book.org/data/employee_survey.csv

http://peopleanalytics-regression-book.org/

9
Survival Analysis for Modeling Singular
Events Over Time

In previous chapters, the outcomes we have been modeling have or have not
occurred at a particular point in time following when the input variables were
measured. For example, in Chapter 4 input variables were measured in the first
three years of an education program and the outcome was measured at the end
of the fourth year. In many situations, the outcome we are interested in is a
singular event that can occur at any time following when the input variables
were measured, can occur at a different time for different individuals, and
once it has occurred it cannot reoccur or repeat. In medical studies, death can
occur or the onset of a disease can be diagnosed at any time during the study
period. In employment contexts, an attrition event can occur at various times
throughout the year.

An obvious and simple way to deal with this would be to simply agree to look
at a specific point in time and measure whether or not the event had occurred
at that point, for example, ‘How many employees had left at the three-year
point?’ Such an approach allows us to use standard generic regression models
like those studied in previous chapters. But this approach has limitations.

Firstly, we are only able to infer conclusions about the likelihood of the event
having occurred as at the end of the period of study. We cannot make infer-
ences about the likelihood of the event throughout the period of study. Being
able to say that attrition is twice as likely for certain types of individuals at
any time throughout the three years is more powerful than merely saying that
attrition is twice as likely at the three-year point.

Secondly, our sample size is constrained by the state of our data at the end
of the period of study. Therefore if we lose track of an individual after two
years and six months, that observation needs to be dropped from our data set
if we are focused only on the three-year point. Wherever possible, loss of data
is something a statistician will want to avoid as it affects the accuracy and
statistical power of inferences, and also means research effort was wasted.

Survival analysis is a general term for the modeling of a time-associated binary
non-repeated outcome, usually involving an understanding of the comparative
risk of that outcome between two or more different groups of interest. There
are two common components in an elementary survival analysis, as follows:

DOI: 10.1201/9781003194156-9 187

https://doi.org/10.1201/9781003194156-9

188 9 Survival Analysis for Modeling Singular Events Over Time

• A graphical representation of the future outcome risk of the different groups
over time, using survival curves based on Kaplan-Meier estimates of sur-
vival rate. This is usually an effective way to establish prima facie relevance
of a certain input variable to the survival outcome and is a very effective
visual way of communicating the relevance of the input variable to non-
statisticians.

• A Cox proportional hazard regression model to establish statistical signifi-
cance of input variables and to estimate the effect of each input variable on
the comparative risk of the outcome throughout the study period.

Those seeking a more in depth treatment of survival analysis should consult
texts on its use in medical/clinical contexts, and a recommended source is
Collett (2015). In this chapter we will use a walkthrough example to illustrate
a typical use of survival analysis in a people analytics context.

The job_retention data set shows the results of a study of around 3,800 indi-
viduals employed in various fields of employment over a one-year period. At
the beginning of the study, the individuals were asked to rate their sentiment
towards their job. These individuals were then followed up monthly for a year
to determine if they were still working in the same job or had left their job
for a substantially different job. If an individual was not successfully followed
up in a given month, they were no longer followed up for the remainder of the
study period.

if needed, get job_retention data
url <- "http://peopleanalytics-regression-book.org/data/job_retention.csv"
job_retention <- read.csv(url)
head(job_retention)

gender field level sentiment intention left month
1 M Public/Government High 3 8 1 1
2 F Finance Low 8 4 0 12
3 M Education and Training Medium 7 7 1 5
4 M Finance Low 8 4 0 12
5 M Finance High 7 6 1 1
6 F Health Medium 6 10 1 2

For this walkthrough example, the particular fields we are interested in are:

• gender: The gender of the individual studied
• field: The field of employment that they worked in at the beginning of the

study
• level: The level of the position in their organization at the beginning of the

study—Low, Medium or High

9.1 Tracking and illustrating survival rates over the study period 189

• sentiment: The sentiment score reported on a scale of 1 to 10 at the begin-
ning of the study, with 1 indicating extremely negative sentiment and 10
indicating extremely positive sentiment

• left: A binary variable indicating whether or not the individual had left
their job as at the last follow-up

• month: The month of the last follow-up

9.1 Tracking and illustrating survival rates over the
study period

In our example, we are defining ‘survival’ as ‘remaining in substantially the
same job’ . We can regard the starting point as month 0, and we are following
up in each of months 1 through 12. For a given month 𝑖, we can define a
survival rate 𝑆𝑖 as follows

𝑆𝑖 = 𝑆𝑖−1(1 − 𝑙𝑖
𝑛𝑖

)

where 𝑙𝑖 is the number reported as left in month 𝑖, and 𝑛𝑖 is the number still
in substantially the same job after month 𝑖 − 1, with 𝑆0 = 1.

The survival package in R allows easy construction of survival rates on data
in a similar format to that in our job_retention data set. A survival object
is created using the Surv() function to track the survival rate at each time
period.

library(survival)

create survival object with event as 'left' and time as 'month'
retention <- Surv(event = job_retention$left,

time = job_retention$month)

view unique values of retention
unique(retention)

[1] 1 12+ 5 2 3 6 8 4 8+ 4+ 11 10 9 7+ 5+ 3+ 7 9+ 11+ 12 10+ 6+ 2+ 1+

We can see that our survival object records the month at which the individual
had left their job if they are recorded as having done so in the data set. If not,

190 9 Survival Analysis for Modeling Singular Events Over Time

the object records the last month at which there was a record of the individual,
appended with a ‘+’ to indicate that this was the last record available.

The survfit() function allows us to calculate Kaplan-Meier estimates of sur-
vival for different groups in the data so that we can compare them. We can
do this using our usual formula notation but using a survival object as the
outcome. Let’s take a look at survival by gender.

kaplan-meier estimates of survival by gender
kmestimate_gender <- survival::survfit(
formula = Surv(event = left, time = month) ~ gender,
data = job_retention

)

summary(kmestimate_gender)

Call: survfit(formula = Surv(event = left, time = month) ~ gender,
data = job_retention)
##
gender=F
time n.risk n.event survival std.err lower 95% CI upper 95% CI
1 1167 7 0.994 0.00226 0.990 0.998
2 1140 24 0.973 0.00477 0.964 0.982
3 1102 45 0.933 0.00739 0.919 0.948
4 1044 45 0.893 0.00919 0.875 0.911
5 987 30 0.866 0.01016 0.846 0.886
6 940 51 0.819 0.01154 0.797 0.842
7 882 43 0.779 0.01248 0.755 0.804
8 830 47 0.735 0.01333 0.709 0.762
9 770 40 0.697 0.01394 0.670 0.725
10 718 21 0.676 0.01422 0.649 0.705
11 687 57 0.620 0.01486 0.592 0.650
12 621 17 0.603 0.01501 0.575 0.633
##
gender=M
time n.risk n.event survival std.err lower 95% CI upper 95% CI
1 2603 17 0.993 0.00158 0.990 0.997
2 2559 66 0.968 0.00347 0.961 0.975
3 2473 100 0.929 0.00508 0.919 0.939
4 2360 86 0.895 0.00607 0.883 0.907
5 2253 56 0.873 0.00660 0.860 0.886
6 2171 120 0.824 0.00756 0.810 0.839
7 2029 85 0.790 0.00812 0.774 0.806
8 1916 114 0.743 0.00875 0.726 0.760

9.1 Tracking and illustrating survival rates over the study period 191

9 1782 96 0.703 0.00918 0.685 0.721
10 1661 50 0.682 0.00938 0.664 0.700
11 1590 101 0.638 0.00972 0.620 0.658
12 1460 36 0.623 0.00983 0.604 0.642

We can see that the n.risk, n.event and survival columns for each group
correspond to the 𝑛𝑖, 𝑙𝑖 and 𝑆𝑖 in our formula above and that the confidence
intervals for each survival rate are given. This can be very useful if we wish
to illustrate a likely effect of a given input variable on survival likelihood.

Let’s imagine that we wish to determine if the sentiment of the individual had
an impact on survival likelihood. We can divide our population into two (or
more) groups based on their sentiment and compare their survival rates.

create a new field to define high sentiment (>= 7)
job_retention$sentiment_category <- ifelse(
job_retention$sentiment >= 7,
"High",
"Not High"

)

generate survival rates by sentiment category
kmestimate_sentimentcat <- survival::survfit(
formula = Surv(event = left, time = month) ~ sentiment_category,
data = job_retention

)

summary(kmestimate_sentimentcat)

Call: survfit(formula = Surv(event = left, time = month) ~ sentiment_category,
data = job_retention)
##
sentiment_category=High
time n.risk n.event survival std.err lower 95% CI upper 95% CI
1 3225 15 0.995 0.00120 0.993 0.998
2 3167 62 0.976 0.00272 0.971 0.981
3 3075 120 0.938 0.00429 0.929 0.946
4 2932 102 0.905 0.00522 0.895 0.915
5 2802 65 0.884 0.00571 0.873 0.895
6 2700 144 0.837 0.00662 0.824 0.850
7 2532 110 0.801 0.00718 0.787 0.815
8 2389 140 0.754 0.00778 0.739 0.769
9 2222 112 0.716 0.00818 0.700 0.732
10 2077 56 0.696 0.00835 0.680 0.713
11 1994 134 0.650 0.00871 0.633 0.667

192 9 Survival Analysis for Modeling Singular Events Over Time

12 1827 45 0.634 0.00882 0.617 0.651
##
sentiment_category=Not High
time n.risk n.event survival std.err lower 95% CI upper 95% CI
1 545 9 0.983 0.00546 0.973 0.994
2 532 28 0.932 0.01084 0.911 0.953
3 500 25 0.885 0.01373 0.859 0.912
4 472 29 0.831 0.01618 0.800 0.863
5 438 21 0.791 0.01758 0.757 0.826
6 411 27 0.739 0.01906 0.703 0.777
7 379 18 0.704 0.01987 0.666 0.744
8 357 21 0.662 0.02065 0.623 0.704
9 330 24 0.614 0.02136 0.574 0.658
10 302 15 0.584 0.02171 0.543 0.628
11 283 24 0.534 0.02209 0.493 0.579
12 254 8 0.517 0.02218 0.476 0.563

We can see that survival seems to consistently trend higher for those with high
sentiment towards their jobs. The ggsurvplot() function in the survminer
package can visualize this neatly and also provide additional statistical infor-
mation on the differences between the groups, as shown in Figure 9.1.

library(survminer)

show survival curves with p-value estimate and confidence intervals
survminer::ggsurvplot(
kmestimate_sentimentcat,
pval = TRUE,
conf.int = TRUE,
palette = c("blue", "red"),
linetype = c("solid", "dashed"),
xlab = "Month",
ylab = "Retention Rate"

)

This confirms that the survival difference between the two sentiment groups
is statistically significant and provides a highly intuitive visualization of the
effect of sentiment on retention throughout the period of study.

9.2 Cox proportional hazard regression models 193

FIGURE 9.1: Survival curves by sentiment category in the job_retention
data

9.2 Cox proportional hazard regression models

Let’s imagine that we have a survival outcome that we are modeling for a
population over a time 𝑡, and we are interested in how a set of input vari-
ables 𝑥1, 𝑥2, … , 𝑥𝑝 influences that survival outcome. Given that our survival
outcome is a binary variable, we can model survival at any time 𝑡 as a binary
logistic regression. We define ℎ(𝑡) as the proportion who have not survived at
time 𝑡, called the hazard function, and based on our work in Chapter 5:

ℎ(𝑡) = ℎ0(𝑡)𝑒𝛽1𝑥1+𝛽2𝑥2+⋯+𝛽𝑝𝑥𝑝

where ℎ0(𝑡) is a base or intercept hazard at time 𝑡, and 𝛽𝑖 is the coefficient
associated with 𝑥𝑖 .

Now let’s imagine we are comparing the hazard for two different individuals 𝐴
and 𝐵 from our population. We make an assumption that our hazard curves
ℎ𝐴(𝑡) for individual 𝐴 and ℎ𝐵(𝑡) for individual 𝐵 are always proportional to
each other and never cross—this is called the proportional hazard assumption.
Under this assumption, we can conclude that

194 9 Survival Analysis for Modeling Singular Events Over Time

ℎ𝐵(𝑡)
ℎ𝐴(𝑡) = ℎ0(𝑡)𝑒𝛽1𝑥𝐵

1 +𝛽2𝑥𝐵
2 +⋯+𝛽𝑝𝑥𝐵

𝑝

ℎ0(𝑡)𝑒𝛽1𝑥𝐴
1 +𝛽2𝑥𝐴

2 +⋯+𝛽𝑝𝑥𝐴𝑝

= 𝑒𝛽1(𝑥𝐵
1 −𝑥𝐴

1)+𝛽2(𝑥𝐵
2 −𝑥𝐴

2)+…𝛽𝑝(𝑥𝐵
𝑝 −𝑥𝐴

𝑝)

Note that there is no 𝑡 in our final equation. The important observation here
is that the hazard for person B relative to person A is constant and indepen-
dent of time. This allows us to take a complicating factor out of our model.
It means we can model the effect of input variables on the hazard without
needing to account for changes over times, making this model very similar in
interpretation to a standard binomial regression model.

9.2.1 Running a Cox proportional hazard regression model

A Cox proportional hazard model can be run using the coxph() function in
the survival package, with the outcome as a survival object. Let’s model our
survival against the input variables gender, field, level and sentiment.

run cox model against survival outcome
cox_model <- survival::coxph(
formula = Surv(event = left, time = month) ~ gender +
field + level + sentiment,

data = job_retention
)

summary(cox_model)

Call:
survival::coxph(formula = Surv(event = left, time = month) ~
gender + field + level + sentiment, data = job_retention)
##
n= 3770, number of events= 1354
##
coef exp(coef) se(coef) z Pr(>|z|)
genderM -0.04548 0.95553 0.05886 -0.773 0.439647
fieldFinance 0.22334 1.25025 0.06681 3.343 0.000829 ***
fieldHealth 0.27830 1.32089 0.12890 2.159 0.030849 *
fieldLaw 0.10532 1.11107 0.14515 0.726 0.468086
fieldPublic/Government 0.11499 1.12186 0.08899 1.292 0.196277
fieldSales/Marketing 0.08776 1.09173 0.10211 0.859 0.390082
levelLow 0.14813 1.15967 0.09000 1.646 0.099799 .
levelMedium 0.17666 1.19323 0.10203 1.732 0.083362 .
sentiment -0.11756 0.88909 0.01397 -8.415 < 2e-16 ***

9.2 Cox proportional hazard regression models 195

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
exp(coef) exp(-coef) lower .95 upper .95
genderM 0.9555 1.0465 0.8514 1.0724
fieldFinance 1.2502 0.7998 1.0968 1.4252
fieldHealth 1.3209 0.7571 1.0260 1.7005
fieldLaw 1.1111 0.9000 0.8360 1.4767
fieldPublic/Government 1.1219 0.8914 0.9423 1.3356
fieldSales/Marketing 1.0917 0.9160 0.8937 1.3336
levelLow 1.1597 0.8623 0.9721 1.3834
levelMedium 1.1932 0.8381 0.9770 1.4574
sentiment 0.8891 1.1248 0.8651 0.9138
##
Concordance= 0.578 (se = 0.008)
Likelihood ratio test= 89.18 on 9 df, p=2e-15
Wald test = 94.95 on 9 df, p=<2e-16
Score (logrank) test = 95.31 on 9 df, p=<2e-16

The model returns the following1

• Coefficients for each input variable and their p-values. Here we can conclude
that working in Finance or Health is associated with a significantly greater
likelihood of leaving over the period studied, and that higher sentiment is
associated with a significantly lower likelihood of leaving.

• Relative odds ratios associated with each input variable. For example, a
single extra point in sentiment reduces the odds of leaving by ~11%. A
single less point increases the odds of leaving by ~12%. Confidence intervals
for the coefficients are also provided.

• Three statistical tests on the null hypothesis that the coefficients are zero.
This null hypothesis is rejected by all three tests which can be interpreted
as meaning that the model is significant.

Importantly, as well as statistically validating that sentiment has a significant
effect on retention, our Cox model has allowed us to control for possible me-
diating variables. We can now say that sentiment has a significant effect on
retention even for individuals of the same gender, in the same field and at the
same level.

1The concordance measure returned is a measure of how well the model can predict in
any given pair who will survive longer and is valuable in a number of medical research
contexts.

196 9 Survival Analysis for Modeling Singular Events Over Time

9.2.2 Checking the proportional hazard assumption

Note that we mentioned in the previous section a critical assumption for our
Cox proportional hazard model to be valid, called the proportional hazard as-
sumption. As always, it is important to check this assumption before finalizing
any inferences or conclusions from your model.

The most popular test of this assumption uses a residual known as a Schoenfeld
residual, which would be expected to be independent of time if the proportional
hazard assumption holds. The cox.zph() function in the survival package
runs a statistical test on the null hypothesis that the Schoenfeld residuals are
independent of time. The test is conducted on every input variable and on
the model as a whole, and a significant result would reject the proportional
hazard assumption.

(ph_check <- survival::cox.zph(cox_model))

chisq df p
gender 0.726 1 0.39
field 6.656 5 0.25
level 2.135 2 0.34
sentiment 1.828 1 0.18
GLOBAL 11.156 9 0.27

In our case, we can confirm that the proportional hazard assumption is not
rejected. The ggcoxzph() function in the survminer package takes the result
of the cox.zph() check and allows a graphical check by plotting the residuals
against time, as seen in Figure 9.2.

survminer::ggcoxzph(ph_check,
font.main = 10,
font.x = 10,
font.y = 10)

9.3 Frailty models 197

-10

0

10

2.7 4 5.4 6.7 7.8 8.8 10 12
Time

Be
ta

(t)
 fo

r g
en

de
r

Schoenfeld Individual Test p: 0.3941

-80
-40

0
40

2.7 4 5.4 6.7 7.8 8.8 10 12
Time

Be
ta

(t)
 fo

r fi
el

d

Schoenfeld Individual Test p: 0.2475

-100

0

100

2.7 4 5.4 6.7 7.8 8.8 10 12
Time

Be
ta

(t)
 fo

r l
ev

el

Schoenfeld Individual Test p: 0.3439

-4
-2
0
2

2.7 4 5.4 6.7 7.8 8.8 10 12
Time

Be
ta

(t)
 fo

r s
en

tim
en

t

Schoenfeld Individual Test p: 0.1764

Global Schoenfeld Test p: 0.2652

FIGURE 9.2: Schoenfeld test on proportional hazard assumption for
cox_model

9.3 Frailty models

We noticed in our example in the previous section that certain fields of em-
ployment appeared to have a significant effect on the attrition hazard. It is
therefore possible that different fields of employment have different base haz-
ard functions, and we may wish to take this into account in determining if
input variables have a significant relationship with attrition. This is analogous
to a mixed model which we looked at in Section 8.1.

In this case we would apply a random intercept effect to the base hazard
function ℎ0(𝑡) according to the field of employment of an individual, in order
to take this into account in our modeling. This kind of model is called a frailty
model, taken from the clinical context, where different groups of patients may
have different frailties (background risks of death).

There are many variants of how frailty models are run in the clinical con-
text (see Collett (2015) for an excellent exposition of these), but the main
application of a frailty model in people analytics would be to adapt a Cox
proportional hazard model to take into account different background risks of
the hazard event occurring among different groups in the data. This is called
a shared frailty model. The frailtypack R package allows various frailty mod-
els to be run with relative ease. This is how we would run a shared frailty

198 9 Survival Analysis for Modeling Singular Events Over Time

model on our job_retention data to take account of the different background
attrition risk for the different fields of employment.

library(frailtypack)

(frailty_model <- frailtypack::frailtyPenal(
formula = Surv(event = left, time = month) ~ gender +
level + sentiment + cluster(field),

data = job_retention,
n.knots = 12,
kappa = 10000

))

##
Be patient. The program is computing ...
The program took 1.53 seconds

Call:
frailtypack::frailtyPenal(formula = Surv(event = left, time = month) ~
gender + level + sentiment + cluster(field), data = job_retention,
n.knots = 12, kappa = 10000)
##
##
Shared Gamma Frailty model parameter estimates
using a Penalized Likelihood on the hazard function
##
coef exp(coef) SE coef (H) SE coef (HIH) z p
genderM -0.029531 0.970901 0.0591820 0.0591820 -0.498986 6.1779e-01
levelLow 0.198548 1.219630 0.0917396 0.0917396 2.164255 3.0445e-02
levelMedium 0.223266 1.250154 0.1035510 0.1035510 2.156101 3.1076e-02
sentiment -0.108262 0.897392 0.0141325 0.0141325 -7.660518 1.8541e-14
##
chisq df global p
level 5.28624 2 0.0711
##
Frailty parameter, Theta: 48.3209 (SE (H): 25.5895) p = 0.029492
##
penalized marginal log-likelihood = -5510.36
Convergence criteria:
parameters = 3.05e-05 likelihood = 4.91e-06 gradient = 1.55e-09
##
LCV = the approximate likelihood cross-validation criterion
in the semi parametrical case = 1.46587
##
n= 3770
n events= 1354 n groups= 6
number of iterations: 18
##
Exact number of knots used: 12
Value of the smoothing parameter: 10000, DoF: 6.31

We can see that the frailty parameter is significant, indicating that there is
sufficient difference in the background attrition risk to justify the application
of a random hazard effect. We also see that the level of employment now

9.3 Frailty models 199

becomes more significant in addition to sentiment, with Low and Medium
level employees more likely to leave compared to High level employees.

The frailtyPenal() function can also be a useful way to observe the different
baseline survivals for groups in the data. For example, a simple stratified Cox
proportional hazard model based on sentiment category can be constructed2.

stratified_base <- frailtypack::frailtyPenal(
formula = Surv(event = left, time = month) ~

strata(sentiment_category),
data = job_retention,
n.knots = 12,
kappa = rep(10000, 2)

)

This can then be plotted to observe how baseline retention differs by group,
as in Figure 9.33.

plot(stratified_base, type.plot = "Survival",
pos.legend = "topright", Xlab = "Month",
Ylab = "Baseline retention rate",
color = 1)

2Note there needs to be a kappa for each level of the stratification.
3This is another route to calculating survival curves similar to Figure 9.1.

200 9 Survival Analysis for Modeling Singular Events Over Time

0 2 4 6 8 10 12

0.
7

0.
8

0.
9

1.
0

Month

Ba
se

lin
e

re
te

nt
io

n
ra

te

strata = 1
strata = 2

FIGURE 9.3: Baseline retention curves for the two sentiment categories in
the job_retention data set

9.4 Learning exercises

9.4.1 Discussion questions

1. Describe some of the reasons why a survival analysis is a useful tool
for analyzing data where outcome events happen at different times.

2. Describe the Kaplan-Meier survival estimate and how it is calcu-
lated.

3. What are some common uses for survival curves in practice?
4. Why is it important to run a Cox proportional hazard model in

addition to calculating survival estimates when trying to understand
the effect of a given variable on survival?

5. Describe the assumption that underlies a Cox proportional hazard
model and how this assumption can be checked.

6. What is a frailty model, and why might it be useful in the context
of survival analysis?

9.4 Learning exercises 201

9.4.2 Data exercises

For these exercises, use the same job_retention data set as in the walkthrough
example for this chapter, which can be loaded via the peopleanalyticsdata
package or downloaded from the internet4. The intention field represents a
score of 1 to 10 on the individual’s intention to leave their job in the next
12 months, where 1 indicates an extremely low intention and 10 indicates an
extremely high intention. This response was recorded at the beginning of the
study period.

1. Create three categories of intention as follows: High (score of 7 or
higher), Moderate (score of 4–6), Low (score of 3 or less)

2. Calculate Kaplan-Meier survival estimates for the three categories
and visualize these using survival curves.

3. Determine the effect of intention on retention using a Cox propor-
tional hazard model, controlling for gender, field and level.

4. Perform an appropriate check that the proportional hazard assump-
tion holds for your model.

5. Run a similar model, but this time include the sentiment input
variable. How would you interpret the results?

6. Experiment with running a frailty model to take into account the
different background attrition risk by field of employment.

4http://peopleanalytics-regression-book.org/data/job_retention.csv

http://peopleanalytics-regression-book.org/

http://taylorandfrancis.com

10
Alternative Technical Approaches in R and
Python

As outlined earlier in this book, all technical implementations of the modeling
techniques in previous chapters have relied wherever possible on base R code
and specialist packages for specific methodologies—this allowed a focus on the
basics of understanding, running and interpreting these models which is the
key aim of this book. For those interested in a wider range of technical options
for running inferential statistical models, this chapter illustrates some alter-
native options and should be considered a starting point for those interested
rather than an in-depth exposition.

First we look at options for generating models in more predictable formats in
R. We have seen in prior chapters that the output of many models in R can be
inconsistent. In many cases we are given more information than we need, and
in some cases we have less than we need. Formats can vary, and we sometimes
need to look in different parts of the output to see specific statistics that we
seek. The tidymodels set of packages tries to bring the principles of tidy data
into the realm of statistical modeling and we will illustrate this briefly.

Second, for those whose preference is to use Python, we provide some exam-
ples for how inferential regression models can be run in Python. While Python
is particularly well-tooled for running predictive models, it does not have the
full range of statistical inference tools that are available in R. In particular,
using predictive modeling or machine learning packages like scikit-learn to
conduct regression modeling can often leave the analyst lacking when seek-
ing information about certain model statistics when those statistics are not
typically sought after in a predictive modeling workflow. We briefly illustrate
some Python packages which perform modeling with a greater emphasis on
inference versus prediction.

DOI: 10.1201/9781003194156-10 203

https://doi.org/10.1201/9781003194156-10

204 10 Alternative Technical Approaches in R and Python

10.1 ‘Tidier’ modeling approaches in R

The tidymodels meta-package is a collection of packages which collectively
apply the principles of tidy data to the construction of statistical mod-
els. More information and learning resources on tidymodels can be found
at https://www.tidymodels.org/. Within tidymodels there are two packages
which are particularly useful in controlling the output of models in R: the
broom and parsnip packages.

10.1.1 The broom package

Consistent with how it is named, broom aims to tidy up the output of the
models into a predictable format. It works with over 100 different types of
models in R. In order to illustrate its use, let’s run a model from a previous
chapter—specifically our salesperson promotion model in Chapter 5.

obtain salespeople data
url <- "http://peopleanalytics-regression-book.org/data/salespeople.csv"
salespeople <- read.csv(url)

As in Chapter 5, we convert the promoted column to a factor and run a bino-
mial logistic regression model on the promoted outcome.

convert promoted to factor
salespeople$promoted <- as.factor(salespeople$promoted)

build model to predict promotion based on sales and customer_rate
promotion_model <- glm(formula = promoted ~ sales + customer_rate,

family = "binomial",
data = salespeople)

We now have our model sitting in memory. We can use three key functions
in the broom package to view a variety of model statistics. First, the tidy()
function allows us to see the coefficient statistics of the model.

10.1 ‘Tidier’ modeling approaches in R 205

load tidymodels metapackage
library(tidymodels)

view coefficient statistics
broom::tidy(promotion_model)

A tibble: 3 x 5
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) -19.5 3.35 -5.83 5.48e- 9
2 sales 0.0404 0.00653 6.19 6.03e-10
3 customer_rate -1.12 0.467 -2.40 1.63e- 2

The glance() function allows us to see a row of overall model statistics:

view model statistics
broom::glance(promotion_model)

A tibble: 1 x 8
null.deviance df.null logLik AIC BIC deviance df.residual nobs
<dbl> <int> <dbl> <dbl> <dbl> <dbl> <int> <int>
1 440. 349 -32.6 71.1 82.7 65.1 347 350

The augment() function augments the observations in the data set with a range
of observation-level model statistics such as residuals:

view augmented data
head(broom::augment(promotion_model))

A tibble: 6 x 9
promoted sales customer_rate .fitted .resid .std.resid .hat .sigma .cooksd
<fct> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 0 594 3.94 0.0522 -1.20 -1.22 0.0289 0.429 1.08e- 2
2 0 446 4.06 -6.06 -0.0683 -0.0684 0.00212 0.434 1.66e- 6
3 1 674 3.83 3.41 0.255 0.257 0.0161 0.434 1.84e- 4
4 0 525 3.62 -2.38 -0.422 -0.425 0.0153 0.433 4.90e- 4
5 1 657 4.4 2.08 0.485 0.493 0.0315 0.433 1.40e- 3
6 1 918 4.54 12.5 0.00278 0.00278 0.0000174 0.434 2.24e-11

206 10 Alternative Technical Approaches in R and Python

These functions are model-agnostic for a very wide range of common models
in R. For example, we can use them on our proportional odds model on soccer
discipline from Chapter 7, and they will generate the relevant statistics in tidy
tables.

get soccer data
url <- "http://peopleanalytics-regression-book.org/data/soccer.csv"
soccer <- read.csv(url)

convert discipline to ordered factor
soccer$discipline <- ordered(soccer$discipline,

levels = c("None", "Yellow", "Red"))

run proportional odds model
library(MASS)
soccer_model <- polr(
formula = discipline ~ n_yellow_25 + n_red_25 + position +
country + level + result,

data = soccer
)

view model statistics
broom::glance(soccer_model)

A tibble: 1 x 7
edf logLik AIC BIC deviance df.residual nobs
<int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 10 -1722. 3465. 3522. 3445. 2281 2291

broom functions integrate well into other tidyverse methods, and allow easy
running of models over nested subsets of data. For example, if we want to
run our soccer discipline model across the different countries in the data set
and see all the model statistics in a neat table, we can use typical tidyverse
grammar to do so using dplyr.

10.1 ‘Tidier’ modeling approaches in R 207

load the tidyverse metapackage (includes dplyr)
library(tidyverse)

define function to run soccer model and glance at results
soccer_model_glance <- function(form, df) {
model <- polr(formula = form, data = df)
broom::glance(model)

}

run it nested by country
soccer %>%
dplyr::nest_by(country) %>%
dplyr::summarise(
soccer_model_glance("discipline ~ n_yellow_25 + n_red_25", data)

)

A tibble: 2 x 8
Groups: country [2]
country edf logLik AIC BIC deviance df.residual nobs
<chr> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 England 4 -883. 1773. 1794. 1765. 1128 1132
2 Germany 4 -926. 1861. 1881. 1853. 1155 1159

In a similar way, by putting model formulas in a dataframe column, numerous
models can be run in a single command and results viewed in a tidy dataframe.

create model formula column
formula <- c(
"discipline ~ n_yellow_25",
"discipline ~ n_yellow_25 + n_red_25",
"discipline ~ n_yellow_25 + n_red_25 + position"

)

create dataframe
models <- data.frame(formula)

run models and glance at results
models %>%
dplyr::group_by(formula) %>%
dplyr::summarise(soccer_model_glance(formula, soccer))

208 10 Alternative Technical Approaches in R and Python

A tibble: 3 x 8
formula edf logLik AIC BIC deviance df.residual nobs
<chr> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 discipline ~ n_yellow_25 3 -1861. 3728. 3745. 3722. 2288 2291
2 discipline ~ n_yellow_25 + n_red_25 4 -1809. 3627. 3650. 3619. 2287 2291
3 discipline ~ n_yellow_25 + n_red_25 + position 6 -1783. 3579. 3613. 3567. 2285 2291

10.1.2 The parsnip package

The parsnip package aims to create a unified interface to running models,
to avoid users needing to understand different model terminology and other
minutiae. It also takes a more hierarchical approach to defining models that is
similar in nature to the object-oriented approaches that Python users would
be more familiar with.

Again let’s use our salesperson promotion model example to illustrate. We
start by defining a model family that we wish to use, in this case logistic
regression, and define a specific engine and mode.

model <- parsnip::logistic_reg() %>%
parsnip::set_engine("glm") %>%
parsnip::set_mode("classification")

We can use the translate() function to see what kind of model we have
created:

model %>%
parsnip::translate()

Logistic Regression Model Specification (classification)
##
Computational engine: glm
##
Model fit template:
stats::glm(formula = missing_arg(), data = missing_arg(),
weights = missing_arg(), family = stats::binomial)

Now with our model defined, we can fit it using a formula and data and then
use broom to view the coefficients:

10.2 Inferential statistical modeling in Python 209

model %>%
parsnip::fit(formula = promoted ~ sales + customer_rate,

data = salespeople) %>%
broom::tidy()

A tibble: 3 x 5
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) -19.5 3.35 -5.83 5.48e- 9
2 sales 0.0404 0.00653 6.19 6.03e-10
3 customer_rate -1.12 0.467 -2.40 1.63e- 2

parsnip functions are particularly motivated around tooling for machine learn-
ing model workflows in a similar way to scikit-learn in Python, but they can
offer an attractive approach to coding inferential models, particularly where
common families of models are used.

10.2 Inferential statistical modeling in Python

In general, the modeling functions contained in scikit-learn—which tends
to be the go-to modeling package for most Python users—are oriented to-
wards predictive modeling and can be challenging to navigate for those
who are primarily interested in inferential modeling. In this section we
will briefly review approaches for running some of the models contained
in this book in Python. The statsmodels package is highly recommended
as it offers a wide range of models which report similar statistics to those
reviewed in this book. Full statsmodels documentation can be found at
https://www.statsmodels.org/stable/index.html.

10.2.1 Ordinary Least Squares (OLS) linear regression

The OLS linear regression model reviewed in Chapter 4 can be generated
using the statsmodels package, which can report a reasonably thorough set
of model statistics. By using the statsmodels formula API, model formulas
similar to those used in R can be used.

210 10 Alternative Technical Approaches in R and Python

import pandas as pd
import statsmodels.formula.api as smf

get data
url = "http://peopleanalytics-regression-book.org/data/ugtests.csv"
ugtests = pd.read_csv(url)

define model
model = smf.ols(formula = "Final ~ Yr3 + Yr2 + Yr1", data = ugtests)

fit model
ugtests_model = model.fit()

see results summary
print(ugtests_model.summary())

OLS Regression Results
==
Dep. Variable: Final R-squared: 0.530
Model: OLS Adj. R-squared: 0.529
Method: Least Squares F-statistic: 365.5
Date: Mon, 19 Apr 2021 Prob (F-statistic): 8.22e-159
Time: 09:41:09 Log-Likelihood: -4711.6
No. Observations: 975 AIC: 9431.
Df Residuals: 971 BIC: 9451.
Df Model: 3
Covariance Type: nonrobust
==
coef std err t P>|t| [0.025 0.975]

Intercept 14.1460 5.480 2.581 0.010 3.392 24.900
Yr3 0.8657 0.029 29.710 0.000 0.809 0.923
Yr2 0.4313 0.033 13.267 0.000 0.367 0.495
Yr1 0.0760 0.065 1.163 0.245 -0.052 0.204
==
Omnibus: 0.762 Durbin-Watson: 2.006
Prob(Omnibus): 0.683 Jarque-Bera (JB): 0.795
Skew: 0.067 Prob(JB): 0.672
Kurtosis: 2.961 Cond. No. 858.
==
##
Notes:
[1] Standard Errors assume that the covariance matrix of the errors is

correctly specified.

10.2 Inferential statistical modeling in Python 211

10.2.2 Binomial logistic regression

Binomial logistic regression models can be generated in a similar way to OLS
linear regression models using the statsmodels formula API, calling the bino-
mial family from the general statsmodels API.

import pandas as pd
import statsmodels.api as sm
import statsmodels.formula.api as smf

obtain salespeople data
url = "http://peopleanalytics-regression-book.org/data/salespeople.csv"
salespeople = pd.read_csv(url)

define model
model = smf.glm(formula = "promoted ~ sales + customer_rate",

data = salespeople,
family = sm.families.Binomial())

fit model
promotion_model = model.fit()

see results summary
print(promotion_model.summary())

Generalized Linear Model Regression Results
==
Dep. Variable: promoted No. Observations: 350
Model: GLM Df Residuals: 347
Model Family: Binomial Df Model: 2
Link Function: logit Scale: 1.0000
Method: IRLS Log-Likelihood: -32.566
Date: Mon, 19 Apr 2021 Deviance: 65.131
Time: 09:41:09 Pearson chi2: 198.
No. Iterations: 9
Covariance Type: nonrobust
==
coef std err z P>|z| [0.025 0.975]

Intercept -19.5177 3.347 -5.831 0.000 -26.078 -12.958
sales 0.0404 0.007 6.189 0.000 0.028 0.053
customer_rate -1.1221 0.467 -2.403 0.016 -2.037 -0.207
==

212 10 Alternative Technical Approaches in R and Python

10.2.3 Multinomial logistic regression

Multinomial logistic regression is similarly available using the statsmodels
formula API. As usual, care must be taken to ensure that the reference cat-
egory is appropriately defined, dummy input variables need to be explicitly
constructed, and a constant term must be added to ensure an intercept is
calculated.

import pandas as pd
import statsmodels.api as sm

load health insurance data
url = "http://peopleanalytics-regression-book.org/data/health_insurance.csv"
health_insurance = pd.read_csv(url)

convert product to categorical as an outcome variable
y = pd.Categorical(health_insurance['product'])

create dummies for gender
X1 = pd.get_dummies(health_insurance['gender'], drop_first = True)

replace back into input variables
X2 = health_insurance.drop(['product', 'gender'], axis = 1)
X = pd.concat([X1, X2], axis = 1)

add a constant term to ensure intercept is calculated
Xc = sm.add_constant(X)

define model
model = sm.MNLogit(y, Xc)

fit model
insurance_model = model.fit()

see results summary
print(insurance_model.summary())

10.2 Inferential statistical modeling in Python 213

MNLogit Regression Results
===
Dep. Variable: y No. Observations: 1453
Model: MNLogit Df Residuals: 1439
Method: MLE Df Model: 12
Date: Mon, 19 Apr 2021 Pseudo R-squ.: 0.5332
Time: 09:41:10 Log-Likelihood: -744.68
converged: True LL-Null: -1595.3
Covariance Type: nonrobust LLR p-value: 0.000
===
y=B coef std err z P>|z| [0.025 0.975]

const -4.6010 0.511 -9.012 0.000 -5.602 -3.600
Male -2.3826 0.232 -10.251 0.000 -2.838 -1.927
Non-binary 0.2528 1.226 0.206 0.837 -2.151 2.656
age 0.2437 0.015 15.790 0.000 0.213 0.274
household -0.9677 0.069 -13.938 0.000 -1.104 -0.832
position_level -0.4153 0.089 -4.658 0.000 -0.590 -0.241
absent 0.0117 0.013 0.900 0.368 -0.014 0.037

y=C coef std err z P>|z| [0.025 0.975]

const -10.2261 0.620 -16.501 0.000 -11.441 -9.011
Male 0.0967 0.195 0.495 0.621 -0.286 0.480
Non-binary -1.2698 2.036 -0.624 0.533 -5.261 2.721
age 0.2698 0.016 17.218 0.000 0.239 0.301
household 0.2043 0.050 4.119 0.000 0.107 0.302
position_level -0.2136 0.082 -2.597 0.009 -0.375 -0.052
absent 0.0033 0.012 0.263 0.793 -0.021 0.028
===

10.2.4 Structural equation models

The semopy package is a specialized package for the implementation of Struc-
tural Equation Models in Python, and its implementation is very similar to
the lavaan package in R. However, its reporting is not as intuitive compared
to lavaan. A full tutorial is available at https://semopy.com/tutorial.html.
Here is an example of how to run the same model as that studied in Section
8.2 using semopy.

https://semopy.com/

214 10 Alternative Technical Approaches in R and Python

import pandas as pd
from semopy import Model

get data
url = "http://peopleanalytics-regression-book.org/data/politics_survey.csv"
politics_survey = pd.read_csv(url)

define full measurement and structural model
measurement_model = """
measurement model
Pol =~ Pol1 + Pol2
Hab =~ Hab1 + Hab2 + Hab3
Loc =~ Loc2 + Loc3
Env =~ Env1 + Env2
Int =~ Int1 + Int2
Pers =~ Pers2 + Pers3
Nat =~ Nat1 + Nat2
Eco =~ Eco1 + Eco2

structural model
Overall ~ Pol + Hab + Loc + Env + Int + Pers + Nat + Eco
"""

full_model = Model(measurement_model)

fit model to data and inspect
full_model.fit(politics_survey)

Then to inspect the results:

inspect the results of SEM (first few rows)
full_model.inspect().head()

lval op rval Estimate Std. Err z-value p-value
0 Pol1 ~ Pol 1.000000 - - -
1 Pol2 ~ Pol 0.713719 0.0285052 25.0382 0
2 Hab1 ~ Hab 1.000000 - - -
3 Hab2 ~ Hab 1.183981 0.0306792 38.5923 0
4 Hab3 ~ Hab 1.127639 0.0304292 37.0578 0

10.2 Inferential statistical modeling in Python 215

10.2.5 Survival analysis

The lifelines package in Python is designed to support survival
analysis, with functions to calculate survival estimates, plot sur-
vival curves, perform Cox proportional hazard regression and check
proportional hazard assumptions. A full tutorial is available at
https://lifelines.readthedocs.io/en/latest/index.html.

Here is an example of how to plot Kaplan-Meier survival curves in Python
using our Chapter 9 walkthrough example. The survival curves are displayed
in Figure 10.1.

import pandas as pd
from lifelines import KaplanMeierFitter
from matplotlib import pyplot as plt

get data
url = "http://peopleanalytics-regression-book.org/data/job_retention.csv"
job_retention = pd.read_csv(url)

fit our data to Kaplan-Meier estimates
T = job_retention["month"]
E = job_retention["left"]
kmf = KaplanMeierFitter()
kmf.fit(T, event_observed = E)

split into high and not high sentiment
highsent = (job_retention["sentiment"] >= 7)

set up plot
survplot = plt.subplot()

plot high sentiment survival function
kmf.fit(T[highsent], event_observed = E[highsent],
label = "High Sentiment")

kmf.plot_survival_function(ax = survplot)

plot not high sentiment survival function
kmf.fit(T[~highsent], event_observed = E[~highsent],
label = "Not High Sentiment")

kmf.plot_survival_function(ax = survplot)

show survival curves by sentiment category
plt.show()

https://lifelines.readthedocs.io/

216 10 Alternative Technical Approaches in R and Python

FIGURE 10.1: Survival curves by sentiment category in the job retention
data

And here is an example of how to fit a Cox Proportional Hazard model simi-
larly to Section 9.21.

from lifelines import CoxPHFitter

fit Cox PH model to job_retention data
cph = CoxPHFitter()
cph.fit(job_retention, duration_col = 'month', event_col = 'left',

formula = "gender + field + level + sentiment")

view results
cph.print_summary()

1I am not aware of any way of running frailty models currently in Python.

10.2 Inferential statistical modeling in Python 217

<lifelines.CoxPHFitter: fitted with 3770 total observations, 2416 right-censored observations>
duration col = 'month'
event col = 'left'
baseline estimation = breslow
number of observations = 3770
number of events observed = 1354
partial log-likelihood = -10724.52
time fit was run = 2021-04-19 09:41:11 UTC
##

coef exp(coef) se(coef) coef lower 95% coef upper 95% exp(coef) lower 95% exp(coef) upper 95%
covariate
gender[T.M] -0.05 0.96 0.06 -0.16 0.07 0.85 1.07
field[T.Finance] 0.22 1.25 0.07 0.09 0.35 1.10 1.43
field[T.Health] 0.28 1.32 0.13 0.03 0.53 1.03 1.70
field[T.Law] 0.11 1.11 0.15 -0.18 0.39 0.84 1.48
field[T.Public/Government] 0.11 1.12 0.09 -0.06 0.29 0.94 1.34
field[T.Sales/Marketing] 0.09 1.09 0.10 -0.11 0.29 0.89 1.33
level[T.Low] 0.15 1.16 0.09 -0.03 0.32 0.97 1.38
level[T.Medium] 0.18 1.19 0.10 -0.02 0.38 0.98 1.46
sentiment -0.12 0.89 0.01 -0.14 -0.09 0.87 0.91
##
z p -log2(p)
covariate
gender[T.M] -0.77 0.44 1.19
field[T.Finance] 3.34 <0.005 10.24
field[T.Health] 2.16 0.03 5.02
field[T.Law] 0.73 0.47 1.10
field[T.Public/Government] 1.29 0.20 2.35
field[T.Sales/Marketing] 0.86 0.39 1.36
level[T.Low] 1.65 0.10 3.32
level[T.Medium] 1.73 0.08 3.58
sentiment -8.41 <0.005 54.49

Concordance = 0.58
Partial AIC = 21467.04
log-likelihood ratio test = 89.18 on 9 df
-log2(p) of ll-ratio test = 48.58

Proportional Hazard assumptions can be checked using the
check_assumptions() method2.

cph.check_assumptions(job_retention, p_value_threshold = 0.05)

2Schoenfeld residual plots can be seen by setting show_plots = True in the parameters.

218 10 Alternative Technical Approaches in R and Python

The ``p_value_threshold`` is set at 0.05. Even under the null hypothesis of no violations, some
covariates will be below the threshold by chance. This is compounded when there are many covariates.
Similarly, when there are lots of observations, even minor deviances from the proportional hazard
assumption will be flagged.
##
With that in mind, it's best to use a combination of statistical tests and visual tests to determine
the most serious violations. Produce visual plots using ``check_assumptions(..., show_plots=True)``
and looking for non-constant lines. See link [A] below for a full example.
##
<lifelines.StatisticalResult: proportional_hazard_test>
null_distribution = chi squared
degrees_of_freedom = 1
model = <lifelines.CoxPHFitter: fitted with 3770 total observations, 2416 right-
censored observations>
test_name = proportional_hazard_test
##

test_statistic p -log2(p)
field[T.Finance] km 1.20 0.27 1.88
rank 1.09 0.30 1.76
field[T.Health] km 4.27 0.04 4.69
rank 4.10 0.04 4.54
field[T.Law] km 1.14 0.29 1.81
rank 0.85 0.36 1.49
field[T.Public/Government] km 1.92 0.17 2.59
rank 1.87 0.17 2.54
field[T.Sales/Marketing] km 2.00 0.16 2.67
rank 2.22 0.14 2.88
gender[T.M] km 0.41 0.52 0.94
rank 0.39 0.53 0.91
level[T.Low] km 1.53 0.22 2.21
rank 1.52 0.22 2.20
level[T.Medium] km 0.09 0.77 0.38
rank 0.13 0.72 0.47
sentiment km 2.78 0.10 3.39
rank 2.32 0.13 2.97
##
##
1. Variable 'field[T.Health]' failed the non-proportional test: p-value is 0.0387.
##
Advice: with so few unique values (only 2), you can include `strata=['field[T.Health]', ...]` in
the call in `.fit`. See documentation in link [E] below.
##

[A] https://lifelines.readthedocs.io/en/latest/jupyter_notebooks/
Proportional%20hazard%20assumption.html
[B] https://lifelines.readthedocs.io/en/latest/jupyter_notebooks/
Proportional%20hazard%20assumption.html#Bin-variable-and-stratify-on-it
[C] https://lifelines.readthedocs.io/en/latest/jupyter_notebooks/
Proportional%20hazard%20assumption.html#Introduce-time-varying-covariates
[D] https://lifelines.readthedocs.io/en/latest/jupyter_notebooks/
Proportional%20hazard%20assumption.html#Modify-the-functional-form
[E] https://lifelines.readthedocs.io/en/latest/jupyter_notebooks/
Proportional%20hazard%20assumption.html#Stratification
##
[]

10.2.6 Other model variants

Implementation of other model variants featured in earlier chapters becomes
thinner in Python. However, of note are the following:

• Ordinal regression is not currently available in the release version of the
statsmodels package but is available in the development version. The mord

10.2 Inferential statistical modeling in Python 219

package offers an implementation of ordinal regression for predictive analyt-
ics purposes, but for inferential modeling users will need to wait for a release
of statsmodels that contains ordinal regression methods or for immediate
use they will need to install the development version from source.

• Mixed models only currently have an implementation for linear mixed mod-
eling in statsmodels. Generalized linear mixed models equivalent to those
found in the lme4 R package are not yet available in Python.

http://taylorandfrancis.com

11
Power Analysis to Estimate Required Sample
Sizes for Modeling

In the vast majority of situations in people analytics, researchers and analysts
have limited control over the size of their samples. The most common situation
is, of course, that analyses are run with whatever data can be gleaned and
cleaned in the time available. At the same time, as we have seen in all of
our previous work, even if a certain difference might exist in real life in the
populations being studied, it is by no means certain that a specific analysis on
samples from these populations will elucidate that difference. Whether that
difference is visible depends on the statistical properties of the samples used.
Therefore, researchers and analysts are living in the reality that when they
conduct inferential analysis, the usefulness of their work depends to a very
large degree on the samples they have available.

This suggests that a conscientious analyst would be well advised to do some
up-front work to determine if their samples have a chance of yielding results
that are of some inferential value. In a practical context, however, this is only
partly true (and that is an important reason why this chapter has been left
towards the end of this book). Estimating required sample sizes is an imprecise
science. Although the mathematics suggest that in theory it should be precise,
in reality we are guessing most of the inputs to the mathematics. In many
cases we are so clueless about those inputs that we move into the realms of
pure speculation and produce ranges of required sample sizes that are so wide
as to be fairly meaningless in practice.

That said, there are situations where conducting power analysis—that is, anal-
ysis of the required statistical properties of samples in order to have a certain
minimum probability of observing a true difference—makes sense. Power anal-
ysis is an important element of experimental design. Experiments in people
analytics usually take one of two forms:

1. Prospective experiments involve running some sort of test or pilot
on populations to determine if a certain measure has a hypothesized
effect. For example, introducing a certain new employee benefit for
a specific subset of the company for a limited period of time, and
determining if there was a difference in the impact on employee
satisfaction compared to those who did not receive the benefit.

DOI: 10.1201/9781003194156-11 221

https://doi.org/10.1201/9781003194156-11

222 11 Power Analysis to Estimate Required Sample Sizes for Modeling

2. Retrospective experiments involve the use of historical data to test
if a certain measure has a hypothesized effect. This usually occurs
opportunistically when it is apparent that a certain measure has
occurred in the past and for a limited time, and data can be drawn
to test whether or not that measure resulted in the hypothesized
effect.

Both prospective and retrospective experiments can involve a lot of work—
either in setting up experiments or in extracting data from history. There is
a natural question as to whether the chances of success justify the required
resources and effort. Before proceeding in these cases, it is sensible to get a
point of view on the likely power of the experiment and what level of sample
size might be needed in order to establish a meaningful inference. For this
reason, power analysis is a common component of research proposals in the
medical or social sciences.

Power analysis is a relatively blunt instrument whose primary value is to make
sure that substantial effort is not being wasted on foolhardy research. If the
analyst already has reasonably available data and wants to test for the effect
of a certain phenomenon, the most direct approach is to just go and run
the appropriate model assuming that it is relatively straightforward to do so.
Power analysis should only be considered if there is clearly some substantial
labor involved in the proposed modeling work.

11.1 Errors, effect sizes and statistical power

Before looking at practical ways to conduct power tests on proposed exper-
iments, let’s review an example of the logical and mathematical principles
behind power testing, so that we understand what the results of power tests
mean. Recall from Section 3.3 the logical mechanisms for testing hypotheses
of statistical difference. Given data on samples of two groups in a population,
the null hypothesis 𝐻0 is the hypothesis that a difference does not exist be-
tween the groups in the overall population. If the null hypothesis is rejected,
we accept the alternative hypothesis 𝐻1 that a difference does exist between
the groups in the population.

Recall also that we use the statistical properties of the samples to make infer-
ences about the null and alternative hypotheses based on statistical likelihood.
This means that four possible situations can occur when we run hypothesis
tests:

1. We fail to reject 𝐻0, and in fact 𝐻1 is false. This is a good outcome.

11.1 Errors, effect sizes and statistical power 223

2. We reject 𝐻0, but in fact 𝐻1 is false. This is known as a Type I
error.

3. We fail to reject 𝐻0, but in fact 𝐻1 is true. This is known as a Type
II error.

4. We reject 𝐻0, and in fact 𝐻1 is true. This is a good outcome and
one which is most often the motivation for the hypothesis test in
the first place.

Statistical power refers to the fourth situation and is the probability that 𝐻0
is rejected and 𝐻1 is true. Statistical power depends at a minimum on three
criteria:

• The significance level 𝛼 at which the analysis wishes to reject 𝐻0 (see Section
3.3). Usually 𝛼 = 0.05.

• The size 𝑛 of the sample being used.
• The size of the difference observed in the sample, known as the effect size.

There are numerous definitions of the effect size that depend on the specific
type of power test being conducted.

As an example to illustrate the mathematical relationship between these crite-
ria, let’s assume that we run an experiment on a group of employees of size 𝑛
where we introduce a new benefit and then test their satisfaction levels before
and after its introduction. As a statistic of a random variable, we can expect
the mean difference in satisfaction to have a normal distribution. Let 𝜇0 be
the mean of the population under the null hypothesis and let 𝜇1 be the mean
of the population under the alternative hypothesis. Now let’s assume that in
our sample we observe a mean satisfaction of 𝜇∗ after the experiment. Recall
from Chapter 3 that to meet a statistical significance standard of 𝛼, we will
need 𝜇∗ to be greater than a certain multiple of the standard error 𝜎√𝑛 above
𝜇0 based on the normal distribution. Let’s call that multiple 𝑧𝛼. Therefore,
we can say that the statistical power of our hypothesis test is:

Power = 𝑃 (𝜇∗ > 𝜇0 + 𝑧𝛼
𝜎√𝑛|𝜇 = 𝜇1)

= 𝑃 (𝜇∗ − 𝜇1
𝜎√𝑛

> −𝜇1 − 𝜇0
𝜎√𝑛

+ 𝑧𝛼|𝜇 = 𝜇1)

= 1 − Φ(−𝜇1 − 𝜇0
𝜎√𝑛

+ 𝑧𝛼)

= 1 − Φ(−𝜇1 − 𝜇0
𝜎

√𝑛 + 𝑧𝛼)
= 1 − Φ(−𝑑√𝑛 + 𝑧𝛼)

where Φ is the cumulative normal probability distribution function, and
𝑑 = 𝜇1−𝜇0

𝜎 is known as Cohen’s effect size. Therefore, we can see that power

224 11 Power Analysis to Estimate Required Sample Sizes for Modeling

depends on a measure of the observed effect size between our two samples
(defined as Cohen’s 𝑑) the significance level 𝛼 and the sample size 𝑛1.

The reader may immediately observe that many of these measures are not
known at the typical point at which we would wish to do a power analysis.
We can assert a minimum level of statistical power that we would wish for—
usually this is somewhere between 0.8 and 0.9. We can also assert our 𝛼. But
at a point of experimental design, we usually do not know the sample size and
we do not know what difference would be observed in that sample (the effect
size). This implies that we are dealing with a single equation with more than
one unknown, and this means that there is no unique solution2. Practically
speaking, looking at ranges of values will be common in power analysis.

11.2 Power analysis for simple hypothesis tests

Usually we will run power analyses to get a sense of required sample sizes.
Given the observations on unknowns in the previous section, we will have to
assert certain possible statistical results in order to estimate required sample
sizes. Most often, we will need to suggest the observed effect size in order to
obtain the minimum sample size for that effect size to return a statistically
significant result at a desired level of statistical power.

Using our example from the previous section, let’s assume that we would see a
‘medium’ effect size on our samples. Cohen’s Rule of Thumb for 𝑑 states that
𝑑 = 0.2 is a small effect size, 𝑑 = 0.5 a medium effect size and 𝑑 = 0.8 a large
effect size. We can use the wp.t() function from the WebPower package in R
to do a power analysis on a paired two-sample 𝑡-test and return a minimum
required sample size. We can assume 𝑑 = 0.5 and that we require a power of
0.8—that is, we want an 80% probability that the test will return an accurate
rejection of the null hypothesis.

library(WebPower)

get minimum n for power of 0.8
(n_test <- WebPower::wp.t(d = 0.5, p = 0.8, type = "paired"))

1We will also need to know the expected distribution of the statistics that we are ana-
lyzing in order to determine the power probability.

2In reality there are more unknowns that this math would imply, due to the imperfection
of what we are trying to measure. For example measurement error and reliability will often
be an unmeasurable unknown. For this reason you will often need a larger sample size than
that indicated by power tests.

11.2 Power analysis for simple hypothesis tests 225

Paired t-test
##
n d alpha power
33.36713 0.5 0.05 0.8
##
NOTE: n is number of *pairs*
URL: http://psychstat.org/ttest

This tells us that we need an absolute minimum of 34 individuals in our sample
for an effect size of 0.5 to return a significant difference at an alpha of 0.05 with
80% probability. Alternatively we can test the power of a specific proposed
sample size.

get power for n of 40
(p_test <- WebPower::wp.t(n1 = 40, d = 0.5, type = "paired"))

Paired t-test
##
n d alpha power
40 0.5 0.05 0.8693981
##
NOTE: n is number of *pairs*
URL: http://psychstat.org/ttest

This tells us that a minimum sample size of 40 would result in a power of
0.87. A similar process can be used to plot the dependence between power
and sample size under various conditions as in Figure 11.1. This is known as
a power curve.

test a range of sample sizes
sample_sizes <- 20:100
power <- WebPower::wp.t(n1 = sample_sizes, d = 0.5, type = "paired")

plot(power)

We can see a ‘sweet spot’ of approximately 40–60 minimum required partic-
ipants, and a diminishing return on statistical power over and above this.
Similarly we can plot a proposed minimum sample size against a range of
effect sizes as in Figure 11.2.

226 11 Power Analysis to Estimate Required Sample Sizes for Modeling

20 40 60 80 100

0.
6

0.
7

0.
8

0.
9

1.
0

Sample size

Po
we

r

FIGURE 11.1: Plot of power against sample size for a paired t-test

test a range of effect sizes
effect_sizes <- 2:8/10
samples <- WebPower::wp.t(n1 = rep(40, 7),

d = effect_sizes,
type = "paired")

plot(samples$d, samples$power, type = "b",
xlab = "Effect size", ylab = "Power")

Similar power test variants exist for other common simple hypothesis tests.
Let’s assume that we want to institute a screening test in a recruiting process,
and we want to validate this test by running it on a random set of employees
with the aim of proving that the test score has a significant non-zero correla-
tion with job performance. If we assume that we will see a moderate correla-
tion of 𝑟 = 0.3 in our sample3, we can use the wp.correlation() function in
WebPower to do a power analysis, resulting in Figure 11.3.

sample_sizes <- 50:150
correl_powers <- WebPower::wp.correlation(n = sample_sizes, r = 0.3)
plot(correl_powers)

3Cohen’s rule of thumb for correlation coefficients is Weak: 0.1, Moderate: 0.3 and Strong:
0.5.

11.2 Power analysis for simple hypothesis tests 227

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.
4

0.
6

0.
8

1.
0

Effect size

Po
we

r

FIGURE 11.2: Plot of power against effect size for a paired t-test

Figure 11.3 informs us that we will likely want to be hitting at least 100
employees in our study to have any reasonable chance of establishing possible
validity for our screening test.

60 80 100 120 140

0.
6

0.
7

0.
8

0.
9

Sample size

Po
we

r

FIGURE 11.3: Plot of power against sample size for a correlation test

228 11 Power Analysis to Estimate Required Sample Sizes for Modeling

11.3 Power analysis for linear regression models

In power tests of linear regression models, the effect size is a statistic of the
difference in model fit between the two models being compared. Most com-
monly this will be a comparison of a ‘full’ fitted model involving specific input
variables compared to a ‘reduced’ model with fewer input variables (often a
random variance model with no input variables).

The 𝑓2 statistic is defined as follows:

𝑓2 = 𝑅2
full − 𝑅2

reduced
1 − 𝑅2

full

where the formula refers to the 𝑅2 fit statistics for the two models being
compared. As an example, imagine we already know that GPA in college has
a significant relationship with job performance, and we wish to determine
if our proposed screening test had incremental validity on top of knowing
college GPA. We might run two linear regression models, one relating job
performance to GPA, and another relating job performance to both GPA and
screening test score. Assuming we would observe a relatively small effect size
for our screening test, we assume 𝑓2 = 0.054, we can plot sample size against
power in determining whether the two models are significantly different. We
will also need to define the number of predictors in the full model (p1 = 2)
and the reduced model (p2 = 1). The plot is shown in Figure 11.4.

sample_sizes <- 100:300
f_sq_power <- WebPower::wp.regression(n = sample_sizes,

p1 = 2, p2 = 1, f2 = 0.05)

plot(f_sq_power)

4Cohen’s rule of thumb for 𝑓2 effect sizes is Small: 0.02, Medium: 0.15, Large: 0.35.

11.4 Power analysis for log-likelihood regression models 229

100 150 200 250 300

0.
6

0.
7

0.
8

0.
9

Sample size

Po
we

r

FIGURE 11.4: Plot of power against sample size for a small effect of a
second input variable in a linear regression model

11.4 Power analysis for log-likelihood regression models

In Chapter 5, we reviewed how measures of fit for log-likelihood models are
still the subject of some debate. Given this, it is unsurprising that measures
of effect size for log-likelihood models are not well established. The most well-
developed current method appeared in Demidenko (2007), and works when
we want to do a power test on a single input variable 𝑥 using the Wald test
on the significance of model coefficients (see Section 7.3.2 for a reminder of
the Wald test).

In this method, the statistical power of a significance test on the input variable
𝑥 is determined using multiple inputs as follows:

1. The likelihood of a positive outcome when 𝑥 = 0 is used to deter-
mine the intercept (p0 in the code below).

2. The likelihood of a positive outcome when 𝑥 = 1 is then used to
determine the regression coefficient for 𝑥 (p1 in the code below).

3. A distribution for 𝑥 is inputted (family below) and the parameters
of that distribution are also entered (parameter below). For example,
if the distribution is assumed to be normal then the mean and
standard deviation would be entered as parameters.

230 11 Power Analysis to Estimate Required Sample Sizes for Modeling

4. This information is fed into the Wald test, and the power for specific
sample sizes is calculated.

For example, let’s assume that we wanted to determine if our new screening
test had a significant effect on promotion likelihood by running an experiment
on employees who were being considered for promotion. We assume that our
screening test is scored on a percentile scale and has a mean of 53 and a
standard deviation of 21. We know that approximately 50% of those being
considered for promotion will be promoted, and we believe that the screening
test may have a small effect whereby those who score zero would still have
a 40% chance of promotion and every additional point scored would increase
this chance by 0.2 percentage points. We run the wp.logistic() function in
WebPower to plot a power curve for various sample sizes as in Figure 11.5.

sample_sizes <- 50:2000
logistic_power <- WebPower::wp.logistic(n = sample_sizes,

p0 = 0.4, p1 = 0.402,
family = "normal",
parameter = c(53, 21))

plot(logistic_power)

0 500 1000 1500 2000

0.
2

0.
4

0.
6

0.
8

1.
0

Sample size

Po
we

r

FIGURE 11.5: Plot of power against sample size for a single input variable
in logistic regression

11.5 Power analysis for hierarchical regression models 231

This test suggests that we would need over 1000 individuals in our experi-
ment in order to have at least an 80% chance of establishing the statistical
significance of a true relationship between screening test score and promotion
likelihood.

11.5 Power analysis for hierarchical regression models

Power tests for explicit hierarchical models usually originate from the context
of the design of clinical trials, which not only concern themselves with the
entire sample size of a study but also need to determine the split of that sample
between treatment and control. It is rare that power analysis would need to
be conducted for hierarchical models in people analytics but the technology
is available in the WebPower package to explore this.

Cluster randomized trials are trials where it is not possible to allocate indi-
viduals randomly to treatment or control groups and where entire clusters
have been allocated at random instead. This creates substantial additional
complexity in understanding statistical power and required sample sizes. The
wp.crt2arm() function in WebPower supports power analysis on 2-arm trials
(treatment and control), and the wp.crt3arm() function supports power anal-
ysis on 3-arm trials (Two different treatments and a control).

Multisite randomized trials are trials where individuals are assigned to treat-
ment or control groups at random, but where these individuals also belong to
different clusters which are important in modeling—for example, they may be
members of clinical groups based on pre-existing conditions, or they may be be-
ing treated in different hospitals or outpatient facilities. Again, this makes for a
substantially more complex calculation of statistical power. The wp.mrt2arm()
and wp.mrt3arm() functions offer support for this.

Power tests are also available for structural equation models. This involves
comparing a more ‘complete’ structural model to a ‘subset’ model where some
of the coefficients from the more ‘complete’ model are set to zero. Such power
tests can be valuable when structural models have been applied previously on
responses to survey instruments and there is an intention to test alternative
models in the future. They can provide information on required future survey
participation and response rates in order to establish whether the improved
fit can be established for the alternative models.

There are two approaches to power tests for structural equation models, using
a chi square test and a root mean squared error (RMSEA) approach. Both
of these methods take a substantial number of input parameters, consistent
with the complexity of structural equation model parameters and the various

232 11 Power Analysis to Estimate Required Sample Sizes for Modeling

alternatives for measuring fit of these models. The chi square test approach
is implemented by the wp.sem.chisq() function, and the RMSEA approach is
implemented by the wp.sem.rmsea() function in WebPower.

11.6 Power analysis using Python

A limited set of resources for doing power analysis is available in the
stats.power module of the statsmodels package. As an example, here is how
we would conduct the power analysis for a paired 𝑡-test as in Section 11.2
above.

import math
from statsmodels.stats.power import TTestPower

power = TTestPower()
n_test = power.solve_power(effect_size = 0.5,

power = 0.8,
alpha = 0.05)

print(math.ceil(n_test))

34

And a power curve can be constructed as in Figure 11.6.

import matplotlib.pyplot as plt
import numpy as np

fig = plt.figure()
fig = TTestPower().plot_power(dep_var = 'nobs',

nobs = np.arange(20, 100),
effect_size = np.array([0.5]),
alpha = 0.05)

plt.show()

11.6 Power analysis using Python 233

20 30 40 50 60 70 80 90 100
Number of Observations

0.6

0.7

0.8

0.9

1.0
Power of Test

es=0.50

FIGURE 11.6: Plot of power against sample size for a paired t-test

http://taylorandfrancis.com

12
Further Exercises for Practice

This final chapter contains a set of scenarios and exercises that will allow you
to put into further practice some of the techniques you have learned in this
book, and are supplementary to the exercises provided at the end of each of
the earlier chapters. All the exercises are based on data that is available in the
peopleanalyticsdata package in R, or alternatively can be downloaded from
the internet. While the scenarios are fictitious, they are intended to represent
typical questions and situations that arise when doing statistical modeling in
people analytics.

As you work through these scenarios, I encourage you to document your work
using either an R Markdown document or a Jupyter Notebook if you prefer.
This will help you keep a record of your method, approach and code in case
you need to put it into practice again in the future. It will also make it easy
for you to share your work with others (for example by putting it in a Github
repository), which will allow you to collaborate, discuss and open your work
to critique. If you are starting out on your analytics journey, exposing your
work to others is one of the best ways to learn. If you are more experienced,
then there are others that will undoubtedly benefit from seeing how you went
about solving these problems.

12.1 Analyzing graduate salaries

Graduate salary levels are important economic indicators of the value of ter-
tiary education. They can provide important insight about the value of ed-
ucation to employers or to the economy as a whole. When studied in detail
they can highlight which particular disciplines have higher or lower levels of
demand for graduates, and they can be important factors in determining what
subjects or majors students choose to specialize in.

Government agencies and educational institutions will analyze graduate
salaries regularly to help critique or validate policy or strategy. Employers
will also regularly study publicly available graduate salary information to help

DOI: 10.1201/9781003194156-12 235

https://doi.org/10.1201/9781003194156-12

236 12 Further Exercises for Practice

them benchmark their compensation and benefits against the external market
for graduates.

12.1.1 The graduates data set

The graduates data set contains information on graduates currently in the
United States across 173 specific subject majors grouped into 16 disciplines of
study. This data set is sourced from the FiveThirtyEight data repository1.

Load the graduates data set via the peopleanalyticsdata package or download
it from the internet2. The fields in the graduate data set are as follows:

• Major is the specific subject major.
• Discipline is the broad subject discipline.
• Total is the number of graduates of working age in the US.
• Unemployment_rate is the proportion of graduates currently unemployed.
• Median_salary is the current median salary of those employed in US dollars.

12.1.2 Discussion questions

1. What kind of outcome is the Median_salary column?
2. Which of the variables in the data set would you be interested in

using to explain the Median_salary outcome? Why?
3. Are there any transformations you would consider on any of the

input variables to help with interpreting the model?
4. What type of model would you use to try to explain the Me-

dian_salary outcome using these variables?
5. Describe the data type of each of the input variables. How would

you interpret the coefficients of the model for each of these data
types?

12.1.3 Data exercises

1. Perform an exploratory data analysis on the data set. Do you see
any interesting patterns?

2. Conduct appropriate hypothesis tests on any of the input variables
that interest you to determine if they relate to statistically signifi-
cant differences in the Median_salary outcome.

3. If you wish to, perform transformations on the data to help with

1https://github.com/fivethirtyeight/data
2http://peopleanalytics-regression-book.org/data/graduates.csv

https://github.com/
http://peopleanalytics-regression-book.org/

12.2 Analyzing a recruiting process 237

the interpretation of model results. For example, are the numerical
scales intuitive for interpretation?

4. Run an appropriate multivariate model to determine which input
variables have a significant effect on median graduate salary.

5. Articulate the results of your model, including an estimate of the
effect of the input variables and the overall fit and goodness-of-fit
of the model.

12.2 Analyzing a recruiting process

Organizations are often very interested in analyzing data from recruiting pro-
cesses, usually with a couple of goals in mind. Firstly, there is an interest in
whether the process is efficient and effective. Secondly, there is an interest
in whether the process is fair to different groups and a foundation for the
recruiting of a sufficiently diverse set of employees.

The efficiency and effectiveness of a recruiting process can depend heavily on
how it is organized, what methods are used and whether those methods are
helpful in determining hiring decisions. Statistics from individual elements of
the process such as interviews or assessments are often studied. Models can
be built to determine which elements influence the decision to hire or not to
hire. In an ideal world, some sort of future job performance outcome would be
particularly useful in studying the efficiency and effectiveness of a recruiting
process, but often this is a very difficult thing to do, especially if the process
is very selective. Hiring only a small proportion of applicants usually results
in a statistical phenomenon known as range restriction, where the statistics of
those hired fall in a very narrow range that makes useful analysis extremely
challenging. For this reason, many organizations focus primarily on the final
hiring decision as an outcome of interest.

Understanding fairness in a recruiting process usually involves studying how
the statistics of that process differ between subgroups of interest and whether
any of the differences are significant enough to infer potential bias. Under-
standing whether these differences are attributable to a particular element of
the process, whether it be a test or the rating behaviors of interviewers, is also
important in determining whether specific action can be taken to remedy the
situation.

238 12 Further Exercises for Practice

12.2.1 The recruiting data set

The recruiting data set contains information on 966 applicants who went
through the final stages of a recruiting process for graduate positions at a
large international financial services company. The recruiting process operates
as follows:

1. Applications are screened according to a number of criteria, includ-
ing their SAT scores and their undergraduate GPA as well as an
online aptitude test they are requested to take and numerous other
judgments made by the individuals screening the applications.

2. Applicants who pass the screening stage are invited for three inter-
views, two of them with line managers and a third with a human
resources professional. Different line managers or HR professionals
conduct the interviews on different interview days. Each interviewer
independently gives an applicant a score on a Likert scale of 1–5 in-
dicating increasing positive sentiment.

3. Interviewers and human resources professionals gather to discuss
each case and make a final decision on whether to hire or not to
hire. All the information used in screening and evaluating applicants
is made available to decision makers during this discussion.

Load the recruiting data set via the peopleanalyticsdata package or down-
load it from the internet3. The fields in the recruiting data set are as follows:

• gender is the gender of the applicant.
• sat is the SAT score of the applicant.
• gpa is the Undergraduate GPA of the applicant.
• apttest is the score on the aptitude test given to the applicant.
• int1 is the rating of the first line manager interviewer.
• int2 is the rating of the second line manager interviewer.
• int3 is the rating of the human resources interviewer.
• hired is a binary indicator of whether a decision was made to hire the

applicant.

12.2.2 Discussion questions

1. Considering the way the recruiting process works, what kinds of
inferential analysis or modeling would you be interested in applying
to help understand its efficiency and effectiveness?

2. What kind of model is most appropriate for explaining the hired
outcome?

3http://peopleanalytics-regression-book.org/data/recruiting.csv

http://peopleanalytics-regression-book.org/

12.3 Analyzing the drivers of performance ratings 239

3. One of your stakeholders is suggesting that the aptitude test is a
waste of time and that the information it provides can already be
gleaned from the applicants’ SAT scores and GPA. What kind of
statistical analysis or model would help you confirm or reject this?

4. Do you think that collinearity might pose a risk in this data? If so,
what variables would concern you?

5. What kind of hypothesis test would you use to determine if the
hiring outcome may be different by gender?

6. What kind of hypothesis test would you use to determine if the
aptitude test score may be different by gender?

7. How would you go about determining if any gender difference in the
hiring outcome can be attributed to a specific part of the process?

12.2.3 Data exercises

1. Perform an exploratory data analysis on the recruiting data set.
Be sure to convert data to the best type for your purposes.

2. Develop a model to test how the aptitude test results are explained
by an applicant’s SAT and GPA. What can you conclude from this?
Have you considered possible collinearity in this model?

3. Develop a model to explain how all the inputs in the hiring decision
(interview ratings, aptitude test, SAT and GPA) influence the hir-
ing decision. Reduce this to the most parsimonious model you are
comfortable with. What can you conclude from this model about
the role of the different elements of the recruiting process in the
final hiring decision?

4. Test whether there is a statistically significant difference in the hir-
ing outcome for males versus females.

5. By adding gender into your model from Data Exercise 3, determine
what element or elements of the recruiting process may be related
to any differences in gender in the hiring outcome.

12.3 Analyzing the drivers of performance ratings

In many organizations and for many job types, promotion and performance
ratings are the primary indicators of the success of employees. However, pro-
motion is not always available to employees and can be very dependent on
role and timing. Since performance ratings are usually generated on a regu-
lar basis, it is usually these that garner the most attention in the analysis of
success.

240 12 Further Exercises for Practice

However, performance ratings are not perfect indicators of reality. They are
usually the result of some judgment from one or more evaluators. Part of that
judgment will be informed by data and part will be informed by contextual
considerations or personal preferences outside of the data. Therefore it is fre-
quently of interest to analyze performance ratings as the outcome of a decision
making process. Such analysis can inform us as to what parts of the evalua-
tion process are operating as intended and what parts are not. Multivariate
models around performance can help us understand the degree to which the
evaluation process is data driven, the degree to which unfairness might exist
in some evaluation decisions and what might be the source of that unfairness.

12.3.1 The employee_performance data set

The employee_performance data set contains data on the most recent perfor-
mance evaluations of 366 salespeople in a technology company. Each employee
is evaluated by their manager, who considers certain performance indicators
together with their own judgment and awards a performance rating from 1
to 3, where 1 means ‘Needs improvement,’ 2 means ‘Performing well’ and 3
means ‘Outstanding.’

Load the employee_performance data set via the peopleanalyticsdata package
or download it from the internet4. The fields in the employee_performance data
set are as follows:

• sales: The sales in millions of dollars made by the salesperson during the
evaluation period

• new_customers: The number of new customers acquired by the salesperson
during the evaluation period

• region: The region that the salesperson operates in: North, South, East or
West

• gender: The gender of the salesperson
• rating: The performance rating awarded by the manager

12.3.2 Discussion questions

1. What hypothesis test should be used to determine if there is a
significant relationship between sales and performance rating?

2. What hypothesis test should be used to determine if there is a sim-
ilar distribution of performance ratings between the four regions?

3. What type of an outcome is the performance rating? What kind
of model is appropriate for explaining what influences performance
ratings?

4http://peopleanalytics-regression-book.org/data/employee_performance.csv

http://peopleanalytics-regression-book.org/

12.4 Analyzing promotion differences between groups 241

4. Which input variables would you want to be significant and which
would you want to be insignificant in your model in order to support
an argument that the evaluation process is fair and relevant to the
job?

5. What assumptions would you need to check after you have run your
model to have confidence that you can trust your inferences?

12.3.3 Data exercises

1. Run separate and appropriate hypothesis tests on each of the in-
put variables to determine if they have a significant effect on the
performance outcome.

2. Prepare your data for running an appropriate multivariate model to
explain the performance outcome. Be sure to convert to appropriate
data types.

3. Run an appropriate multivariate model to explain the performance
outcome. Report on which variables are significant and estimate the
effects of the significant variables.

4. Determine and comment on the overall fit and goodness-of-fit of
your model. Use this to make a comment on how ‘data driven’ you
believe the evaluation process to be.

5. Perform appropriate checks on the assumptions of your model.
What approach might you take if any of these tests fail?

12.4 Analyzing promotion differences between groups

As mentioned in the previous section, promotion is a more challenging out-
come to analyze because it can happen at different times for different people
or groups. Nevertheless, over certain time periods—usually several years—
organizations will be interested in understanding what affects the likelihood
of promotion among their employees.

It is particularly interesting to compare subgroups of employees that have
common characteristics to see if there is a difference in their likelihood of
promotion over a specified time period. This is highly analogous to the study of
retention or attrition in that promotion can be considered a singular event that
can happen to different individuals at different points in time. Like retention
or attrition, we are not only interested in whether this event occurred as at the
end of a period of time, we are also interested in when it occurred throughout
the period.

242 12 Further Exercises for Practice

12.4.1 The promotion data set

The promotion data set contains data on 1134 individuals who joined a re-
tailer in an entry-level job, and tracks them for up to eight subsequent years
post joining. For each individual the data records whether or not they were
promoted, and if so in which year the promotion occurred, where the date
of their joining is Year 0. Once promotion occurs, an individual is no longer
tracked. If an individual was not promoted, then the year in which the last
record occurred is captured.

Load the promotion data set via the peopleanalyticsdata package or download
it from the internet5. The fields in the data are as follows:

• diverse indicates whether or not the individual is a member of one of the
organization’s diversity programs.

• flexible indicates whether the individual worked on a part-time program
for at least 6 months.

• store indicates if the individual joined the company in a retail store position.
• promoted indicates whether the individual was promoted.
• year indicates the year in which the last record was made of the individual.

12.4.2 Discussion questions

1. What type of analysis is most appropriate to understand if there
is a difference in promotion likelihood for employees who are on
flexible hours, in diversity programs or who work in-store?

2. What type of illustration would you use to show whether each of
these three factors individually have an effect on promotion likeli-
hood?

3. What type of model would be most appropriate to determine the
combined effects of all of these factors on promotion likelihood?

4. How would you go about determining whether any differences in
promotion likelihood in a given group (such as the flexible working
group) is mediated by membership of another group?

5. What assumptions would you need to check to validate that your
analysis is trustworthy?

12.4.3 Data exercises

1. Run an exploratory data analysis to understand any general pat-
terns of interest in the data.

5http://peopleanalytics-regression-book.org/data/promotion.csv

http://peopleanalytics-regression-book.org/

12.5 Analyzing feedback on learning programs 243

2. Perform an analysis and generate an appropriate graph to illustrate
the impact of flexible working on the likelihood of promotion. De-
termine if there is a statistically significant effect.

3. Repeat this analysis to determine the impact of diversity program
membership.

4. Run an appropriate multivariate model to determine how all three
variables of flexible working, diversity and in-store working affect
the likelihood of promotion. Remember to check the assumptions
of your model.

5. How would you explain your conclusions? Are there any corrective
actions that this analysis might point to?

12.5 Analyzing feedback on learning programs

Assessing the effectiveness of learning programs remains one of the most chal-
lenging problems in people analytics. As with many challenging analytics prob-
lems, measurement is the key issue. It is exceptionally difficult to track and
measure the impact of learning on the future day-to-day success of the indi-
viduals who have had access to it. While it makes sense to try to understand
the influence of learning on important outcomes like employment, promotion
or attrition, these outcomes can often be too distant, too generic in nature
and too influenced by context and other factors to expect specific learning
participation to show any meaningful influence on them.

Because of the challenges in objectively measuring the impact of learning,
analysts often rely on the reaction and feedback of learning participants as
an important measure of the success of learning programs. If the content of
the program is known to be important to future work and related to future
success, and if the participants report that the program was effective for them,
then this can create a compelling argument for the success of the program.

12.5.1 The learning data set

The learning data set contains 4974 instances of feedback from 326 different
participants in a range of learning programs offered by an executive education
provider. Each row of data represents the feedback of a specific participant on
a specific program that they participated in. Participants were not required
to respond to all feedback questions and any question where no response was
given is indicated as NA.

244 12 Further Exercises for Practice

Load the learning data set via the peopleanalyticsdata package or download
it from the internet6. The fields in the learning data set are as follows:

• idcode is the unique ID of the participant.
• rec is a binary value indicating whether the participant would recommend

the program to others.
• rel is a rating from the participant on the relevance of the program to their

work, where 1 is Very Low and 5 is Very High.
• fun is a rating on how enjoyable and fun the participant found the program,

where 1 is Very Low and 5 is Very High
• clar is a rating from the participant on the clarity of the content and teach-

ing in the program, where 1 is Very Low and 5 is Very High.
• home is a rating from the participant on the quality of the homework or

project work in the program, where 1 is Very Low and 5 is Very High.
• class is a rating from the participant on the quality of the overall class who

attended the program, where 1 is Very Low and 5 is Very High.
• fac is a rating from the participant on the quality of the program faculty

and instructors, where 1 is Very Low and 5 is Very High.

12.5.2 Discussion questions

1. What kind of outcome is the rec column and which kind of model
best suits this outcome type?

2. Describe the nature of the hierarchy in this data set.
3. Describe what question we would be answering if we ignored the

hierarchy in modeling what influences rec.
4. Describe what question we would be answering if we considered the

hierarchy in modeling what influences rec.
5. What kind of model would you use to explicitly consider this hier-

archy in modeling what influences rec? What kinds of parameters
would you experiment with in running this model?

6. Describe what you would expect to see in the output of a model
that considered the hierarchy in modeling what influences rec.

12.5.3 Data exercises

1. Prepare and run a model to determine which elements of feedback
influence whether or not the program will be recommended to oth-
ers.

2. Prepare and run a separate model to determine which elements of
feedback influence a participant in deciding if they would recom-
mend a program to others.

6http://peopleanalytics-regression-book.org/data/learning.csv

http://peopleanalytics-regression-book.org/

12.5 Analyzing feedback on learning programs 245

3. Experiment with the model from Data Exercise 2 by adjusting
which parameters you model at the participant level.

4. Describe the different outputs of your models from Data Exercises
2 and 3 and how to interpret them.

5. Compare the outputs of your models from Data Exercises 2 and 3
to those from Data Exercise 1. How might your conclusions differ
between the two modeling approaches?

http://taylorandfrancis.com

References

Agresti, Alan. 2007. An Introduction to Categorical Data Analysis.

———. 2010. Analysis of Ordinal Categorical Data.

Bartholomew, David J., Martin Knott, and Irini Moustaki. 2011. Latent Vari-
able Models and Factor Analysis: A Unified Approach.

Bhattacharya, P. K., and Prabir Burman. 2016. Theory and Methods of Statis-
tics.

Collett, David. 2015. Modelling Survival Data in Medical Research.

Demidenko, Eugene. 2007. “Sample Size Determination for Logistic Regression
Revisited.” Statistics in Medicine.

Fagerland, Morten W., and David W. Hosmer. 2017. “How to Test for Good-
ness of Fit in Ordinal Logistic Regression Models.” The Stata Journal.

Fagerland, Morten W., David W. Hosmer, and Anna M. Bofin. 2008. “Multi-
nomial Goodness‐of‐fit Tests for Logistic Regression Models.” Statistics in
Medicine.

Hosmer, David W., Stanley Lemeshow, and Rodney X. Sturdivant. 2013. Ap-
plied Logistic Regression.

Jiang, Jiming. 2007. Linear and Generalized Linear Mixed Models and Their
Applications.

Menard, Scott. 2010. Logistic Regression: From Introductory to Advanced Con-
cepts and Applications.

Montgomery, Douglas C., Elizabeth A. Peck, and G. Geoffrey Vining. 2012.
Introduction to Linear Regression Analysis.

Rao, C. Radhakrishna, Shalabh, Helge Toutenburg, and Christian Heumann.
2008. The Multiple Linear Regression Model and Its Extensions.

Senn, Stephen. 2011. “Francis Galton and Regression to the Mean.” Signifi-
cance.

Skrondal, Anders, and Sophia Rabe-Hesketh. 2004. Generalized Latent Vari-
able Modeling: Multilevel, Longitudinal, and Structural Equation Models.

Venables, W. N., and B. D. Ripley. 2002. Modern Applied Statistics with s.

DOI: 10.1201/9781003194156-12 247

https://doi.org/10.1201/9781003194156-12

248 12 References

Wickham, Hadley. 2016. ggplot2: Elegant Graphics for Data Analysis. https:
//ggplot2-book.org/.

Wickham, Hadley, and Garrett Grolemund. 2016. R for Data Science. https:
//r4ds.had.co.nz/.

Xie, Yihui, Christophe Dervieux, and Emily Riederer. 2020. R Markdown
Cookbook. https://bookdown.org/yihui/rmarkdown-cookbook/.

https://ggplot2-book.org/
https://ggplot2-book.org/
https://r4ds.had.co.nz/
https://r4ds.had.co.nz/
https://bookdown.org/

Glossary

alpha In hypothesis testing, the standard for rejection of the null hypothesis
(usually 0.05). The p-value of the hypothesis test needs to be less than alpha
to reject the null hypothesis.

alternative hypothesis In hypothesis testing, the negation of the null hy-
pothesis. Usually this is the hypothesis that a given statement about a pop-
ulation is true.

binomial logistic regression A regression technique that models the prob-
ability of a binary or dichotomous event using a logistic function.

coefficient An estimated parameter of a model which can be used to explain
the influence of an input variable on the outcome variable.

collinearity A situation where two input variables are highly correlated with
each other. This can affect the accuracy of inferences from models.

confidence interval In statistical estimation, the range of values that is
likely to contain the true value of a parameter to a specified level of
certainty—most commonly 95%.

correlation A normalized version of covariance that ranges from −1 to 1. It
is a more intuitive measure of how one variable changes as another changes.

covariance A measure of the extent to which one variable changes as another
changes.

Cox proportional hazard A regression technique used to model singular
events that occur at different times, used frequently in survival analysis.

dummy variable A way of expressing the value of a categorical variable in
binary form to allow that variable to be used as an input to a model. A
variable that takes a set of 𝑘 categorical values is converted to 𝑘 dummy
binary variables.

effect size A measure of the strength of the relationship between two vari-
ables in a sample, used in calculations of statistical power. Numerous mea-
sures of effect size exist for different types of analysis. Cohen’s 𝑑 is the most

DOI: 10.1201/9781003194156-12 249

https://doi.org/10.1201/9781003194156-12

250 12 Glossary

well known and is a normalized measure of the size of the difference between
two sample means.

factor analysis A technique used to confirm or refine a set of latent variables
that are proposed to explain a larger number of measured variables.

fit The extent to which the variance of the outcome variable is explained by a
model. Also used as a verb to describe the process of calculating the optimal
parameters of a model which reduce the error to a minimum.

generalized linear model (GLM) A generalization of linear regression to
allow for modeling of outcome variables that are not normally distributed.
Logistic regression models which model binary or categorical outcome vari-
ables are among the most common GLMs.

goodness-of-fit In linear regression, a test of the null hypothesis that a fitted
model has no better explanatory power than a null or random model. In
logistic regression, a test of the null hypothesis that a fitted model has a
better explanatory power than a null or random model.

hypothesis test A statistical technique that determines the likelihood of
truth of a statement about a population based on the statistical properties
of a sample of that population.

inferential model A model whose primary objective is to explain the rela-
tionships between input variables and an outcome variable.

input variable A variable which is to be used in a model to try to explain
the outcome variable. Also known as a covariate or an independent variable.

linear regression A regression technique that models a linear relationship
between a set of input variables and a continuous outcome variable.

logistic regression A set of regression techniques that model the probabili-
ties of at least two distinct outcomes using a logistic function to approximate
a probability distribution.

mean The average value of a sample of data.

mixed model A regression technique that accounts for hierarchical group-
ings in data by modeling fixed effects within groups and random effects
between groups. Also known as a hierarchical or multilevel model.

multicollinearity A situation where more than two input variables have a
strong linear relationship with each other. This can affect the accuracy of
inferences from models.

Glossary 251

multinomial logistic regression A regression technique that models the
probability of a number of distinct nominal outcome events relative to a
reference outcome event.

normal distribution The theoretical distribution of a random variable in
an unbounded bell-shaped curve.

null hypothesis In hypothesis testing, the assumption that a statement
about a population is not true. The null hypothesis needs to be rejected
to prove statistical significance.

odds The ratio of the probability of an event occurring and the probability
of it not occurring. A key metric in interpreting logistic regression models.

odds ratio In logistic regression, the multiple of the odds of the outcome
brought about by a unit change in an input variable, assuming no change in
the other input variables. It is the exponent of the coefficient of that input
variable.

ordinal logistic regression A set of regression techniques that model an
ordered category outcome such as a Likert scale. The most commonly used
technique is proportional odds logistic regression.

outcome variable The variable to be explained in a model. Also known as
a dependent variable, target variable or response variable.

parametric model A model for which the outcome variable can be ex-
plained or predicted by the input variables without any need for additional
information.

Pseudo-R-squared A variety of metrics used to measure the fit of a logis-
tic regression model, intended to be analogous to the R-squared in linear
regression.

p-value In hypothesis testing, the maximum probability of the null hypothe-
sis based on the statistical properties of a sample. p-values need to be lower
than a certain standard (known as alpha and usually 0.05) to reject the null
hypothesis.

people analytics The study of the behaviors and characteristics of people
or groups in relation to important business, organizational or institutional
outcomes.

predictive model A model whose primary objective is to accurately predict
the outcome variable from new observations of the input variables.

252 12 Glossary

random variable A variable which is independent and identically dis-
tributed. The value of an observation of a random variable is completely
independent of the value of other observations.

R-squared A metric used to measure the fit of a linear regression model,
with a value ranging from 0 to 1.

regression A set of statistical techniques used to estimate the relationship
between a set of input variables and an outcome variable.

residual The error or difference between the true value of the outcome vari-
able and that estimated by a model for a given observation.

standard deviation The square root of the variance for a sample of data.
It gives a more intuitive measure of how the data varies around its mean
relative to its inherent scale.

standard error A standard deviation of a sampled statistic of a random vari-
able. For example, the standard error of the mean is the standard deviation
of the sampled means of the variable.

statistical power The probability that a null hypothesis is accurately re-
jected, used in considering the minimal sample sizes needed in experiments.

stratified models Where the outcome variable is categorical with more than
two categories, “stratified models” refers to a set of binomial models that
model membership of each category.

structural equation model A regression technique that proposes a smaller
number of latent variables to explain the measured input variables and mod-
els the relationship between the latent variables and the outcome variable.
Particularly useful in the analysis of large survey instruments.

survival analysis A technique used to model the likelihood of singular
events that occur at different times, so named because of its use in epi-
demiology to study death and disease events.

variance A measure of the extent to which a sample of data varies around
its mean.

Index

AIC (Akaike Information Criterion),
120

Akaike Information Criterion, see
AIC

binomial logistic regression, 101–123
coefficients, 110, 114
goodness-of-fit tests, 119
multiple, 113
predictions, 122
simple, 106

Brant-Wald test, 157

Cohen’s effect size, 223
collinearity, 90, 122
confidence interval (statistics), 49
correlation (statistics), 44

point-biserial correlation, 45
rank-biserial correlation, 46

covariance (statistics)
population covariance, 44
sample covariance, 43

Cox proportional hazard, 188, 193
proportional hazard assumption,

196

data sets
charity_donation, 63, 124
employee_performance, 240
employee_survey, 186
graduates, 236
health_insurance, 129, 141
job_retention, 188, 201
learning, 243
managers, 160
politics_survey, 172
promotion, 242
recruiting, 238

salespeople, 39, 104, 204
soccer, 146, 206
sociological_data, 97
speed_dating, 165, 185
ugtests, 38, 67

descriptive statistics, 40–46
dummy variables

in linear regression, 84
in logistic regression, 113

evidence-based practice, 3
experiments, 221

frailty models, 197

generalized linear model, see GLM
GLM (generalized linear model), 101

hierarchical data, 163
hypothesis testing, 49–61

alpha, 50
alternative hypothesis, 50
chi-square test, 57
logic and intuition, 49
null hypothesis, 49
one and two tailed tests, 52
p-hacking, 54
p-value, 50, 52
statistically significant, 54
test of non-zero correlation, 54

inferential model, 2, 3, 5
input variables, 5

categorical, 84, 113

Kaplan-Meier estimates, 188, 190
Kendall’s tau, 45

linear regression, 65–96

DOI: 10.1201/9781003194156-12 253

https://doi.org/10.1201/9781003194156-12

254 Index

coefficients, 70, 76, 86
data sparseness, 83
F-statistic, 80
fitting, 74
goodness-of-fit, 80
homoscedacity of residuals, 88
interaction terms, 93
linearity and additivity

assumption, 86
multiple linear regression, 76
normal distribution of residuals,

89
ordinary least squares, 65
origins, 65
predictions, 81
quadratic and polynomial

extensions, 96
R-squared, 74
residuals, 72
selecting input variables, 83
simple linear regression, 69

log odds, 109
logistic function

as a model for probability, 107
origins, 102

mean (statistics), 40
mixed models, 164–170

fixed effects, 164
random effects, 165

multicollinearity, 91, 122
multilevel models, see mixed models
multinomial logistic regression,

127–140
changing reference, 137
coefficients, 135
goodness-of-fit, 140
Independence of Irrelevant

Alternatives (IIA)
assumption, 128

model simplification, 138
reference category, 127, 134
relative risk, 134

normal distribution (statistics), 48

odds, 109, 110
odds ratio, 110
ordinal logistic regression, see

proportional odds logistic
regression

outcome variable, 5
binary, 103
continuous, 66
dichotomous, 103
nominal categories, 128
ordinal, 143

parametric model, 4
parsimony, 120
Pearson residuals, 122
Pearson’s correlation, 44
power analysis, 221–232

f-squared, 228
logic and principles, 222

predictive model, 2
proportional odds logistic regression,

143–159
alternatives to, 158
coefficients, 151
goodness-of-fit, 154
predictions, 153
proportional odds assumption,

145, 155
Pseudo-R-squared

in binomial logistic regression,
118

in multinomial logistic
regression, 139

in ordinal logistic regression, 154
Python

packages
scikit-learn, 203, 209
scipy.stats, 60
lifelines, 215
semopy, 213
statsmodels, 209

programming language, 10

R
box and whisker plots, 31

Index 255

categorical factors, 14
combining dataframes, 23
data, 11
data types, 13
dataframes, 17
errors, 29
functions, 24
histograms, 31
installation and use, 10
lists, 16
loading data, 18
matrices, 16
messages, 30
missing data, 20
ordered factors, 14
packages

brant, 157
brglm2, 159
broom, 204
dplyr, 206
frailtypack, 197
generalhoslem, 155
GGally, 34
ggplot2, 33
plotly, 34
installing, 26
lavaan, 174
lme4, 168
LogisticDx, 119
MASS, 27, 150
mctest, 91
nnet, 134
parsnip, 208
peopleanalyticsdata, 27
rms, 159
survminer, 192
survival, 189
tidymodels, 203
tidyverse, 29
using, 27
WebPower, 224

pairplot, 34
pipe operator, 28
programming language, 10
R Markdown, 34

scatter plots, 31
subsetting dataframes, 22
type coercion, 15
vectors, 14
warnings, 30

random variables, 46–49
central limit theorem, 46
sampling, 46

regression
role in people analytics, 2
binomial, see binomial logistic

regression
linear, see linear regression
multinomial, see multinomial

logistic regression
ordinal, see proportional odds

logistic regression
ordinary least squares, see linear

regression

Schoenfeld residual, 196
Spearman’s rho, 45
standard deviation (statistics), 43
standard error (statistics), 47
statistical power, 223
stratified models, 127, 131
structural equation models, 170–184

factor analysis, 172
measurement model, 172, 173
path diagram, 173
refining, 178
structural model, 172, 180

survival analysis, 187–199

t-distribution (statistics), 48

variance (statistics), 42
population variance, 42
sample variance, 42

variance inflation factor, see VIF
VIF (variance inflation factor), 91

Welch’s t-test, 51

	Cover
	Half Title
	Title Page
	Copyright Page
	Contents
	Foreword by Alexis Fink
	Introduction
	1. The Importance of Regression in People Analytics
	1.1. Why is regression modeling so important in people analytics?
	1.2. What do we mean by ‘modeling’ ?
	1.2.1. The theory of inferential modeling
	1.2.2. The process of inferential modeling

	1.3. The structure, system and organization of this book

	2. The Basics of the R Programming Language
	2.1. What is R?
	2.2. How to start using R
	2.3. Data in R
	2.3.1. Data types
	2.3.2. Homogeneous data structures
	2.3.3. Heterogeneous data structures

	2.4. Working with dataframes
	2.4.1. Loading and tidying data in dataframes
	2.4.2. Manipulating dataframes

	2.5. Functions, packages and libraries
	2.5.1. Using functions
	2.5.2. Help with functions
	2.5.3. Writing your own functions
	2.5.4. Installing packages
	2.5.5. Using packages
	2.5.6. The pipe operator

	2.6. Errors, warnings and messages
	2.7. Plotting and graphing
	2.7.1. Plotting in base R
	2.7.2. Specialist plotting and graphing packages

	2.8. Documenting your work using R Markdown
	2.9. Learning exercises
	2.9.1. Discussion questions
	2.9.2. Data exercises

	3. Statistics Foundations
	3.1. Elementary descriptive statistics of populations and samples
	3.1.1. Mean, variance and standard deviation
	3.1.2. Covariance and correlation

	3.2. Distribution of random variables
	3.2.1. Sampling of random variables
	3.2.2. Standard errors, the t-distribution and confidence intervals

	3.3. Hypothesis testing
	3.3.1. Testing for a difference in means (Welch’s t-test)
	3.3.2. Testing for a non-zero correlation between two variables t-test for correlation)
	3.3.3. Testing for a difference in frequency distribution between different categories in a data set (Chi-square test)

	3.4. Foundational statistics in Python
	3.5. Learning exercises
	3.5.1. Discussion questions
	3.5.2. Data exercises

	4. Linear Regression for Continuous Outcomes
	4.1. When to use it
	4.1.1. Origins and intuition of linear regression
	4.1.2. Use cases for linear regression
	4.1.3. Walkthrough example

	4.2. Simple linear regression
	4.2.1. Linear relationship between a single input and an outcome
	4.2.2. Minimising the error
	4.2.3. Determining the best fit
	4.2.4. Measuring the fit of the model

	4.3. Multiple linear regression
	4.3.1. Running a multiple linear regression model and interpreting its coefficients
	4.3.2. Coefficient confidence
	4.3.3. Model ‘goodness-of-fit’
	4.3.4. Making predictions from your model

	4.4. Managing inputs in linear regression
	4.4.1. Relevance of input variables
	4.4.2. Sparseness (‘missingness’) of data
	4.4.3. Transforming categorical inputs to dummy variables

	4.5. Testing your model assumptions
	4.5.1. Assumption of linearity and additivity
	4.5.2. Assumption of constant error variance
	4.5.3. Assumption of normally distributed errors
	4.5.4. Avoiding high collinearity and multicollinearity between input variables

	4.6. Extending multiple linear regression
	4.6.1. Interactions between input variables
	4.6.2. Quadratic and higher-order polynomial terms

	4.7. Learning exercises
	4.7.1. Discussion questions
	4.7.2. Data exercises

	5. Binomial Logistic Regression for Binary Outcomes
	5.1. When to use it
	5.1.1. Origins and intuition of binomial logistic regression
	5.1.2. Use cases for binomial logistic regression
	5.1.3. Walkthrough example

	5.2. Modeling probabilistic outcomes using a logistic function
	5.2.1. Deriving the concept of log odds
	5.2.2. Modeling the log odds and interpreting the coefficients
	5.2.3. Odds versus probability

	5.3. Running a multivariate binomial logistic regression model
	5.3.1. Running and interpreting a multivariate binomial logistic regression model
	5.3.2. Understanding the fit and goodness-of-fit of a binomial logistic regression model
	5.3.3. Model parsimony

	5.4. Other considerations in binomial logistic regression
	5.5. Learning exercises
	5.5.1. Discussion questions
	5.5.2. Data exercises

	6. Multinomial Logistic Regression for Nominal Category Outcomes
	6.1. When to use it
	6.1.1. Intuition for multinomial logistic regression
	6.1.2. Use cases for multinomial logistic regression
	6.1.3. Walkthrough example

	6.2. Running stratified binomial models
	6.2.1. Modeling the choice of Product A versus other products
	6.2.2. Modeling other choices

	6.3. Running a multinomial regression model
	6.3.1. Defining a reference level and running the model
	6.3.2. Interpreting the model
	6.3.3. Changing the reference

	6.4. Model simplification, fit and goodness-of-fit for multinomial logistic regression models
	6.4.1. Gradual safe elimination of variables
	6.4.2. Model fit and goodness-of-fit

	6.5. Learning exercises
	6.5.1. Discussion questions
	6.5.2. Data exercises

	7. Proportional Odds Logistic Regression for Ordered Category Outcomes
	7.1. When to use it
	7.1.1. Intuition for proportional odds logistic regression
	7.1.2. Use cases for proportional odds logistic regression
	7.1.3. Walkthrough example

	7.2. Modeling ordinal outcomes under the assumption of proportional odds
	7.2.1. Using a latent continuous outcome variable to derive a proportional odds model
	7.2.2. Running a proportional odds logistic regression model
	7.2.3. Calculating the likelihood of an observation being in a specific ordinal category
	7.2.4. Model diagnostics

	7.3. Testing the proportional odds assumption
	7.3.1. Sighting the coefficients of stratified binomial models
	7.3.2. The Brant-Wald test
	7.3.3. Alternatives to proportional odds models

	7.4. Learning exercises
	7.4.1. Discussion questions
	7.4.2. Data exercises

	8. Modeling Explicit and Latent Hierarchy in Data
	8.1. Mixed models for explicit hierarchy in data
	8.1.1. Fixed and random effects
	8.1.2. Running a mixed model

	8.2. Structural equation models for latent hierarchy in data
	8.2.1. Running and assessing the measurement model
	8.2.2. Running and interpreting the structural model

	8.3. Learning exercises
	8.3.1. Discussion questions
	8.3.2. Data exercises

	9. Survival Analysis for Modeling Singular Events Over Time
	9.1. Tracking and illustrating survival rates over the study period
	9.2. Cox proportional hazard regression models
	9.2.1. Running a Cox proportional hazard regression model
	9.2.2. Checking the proportional hazard assumption

	9.3. Frailty models
	9.4. Learning exercises
	9.4.1. Discussion questions
	9.4.2. Data exercises

	10. Alternative Technical Approaches in R and Python
	10.1. ‘Tidier’ modeling approaches in R
	10.1.1. The broom package
	10.1.2. The parsnip package

	10.2. Inferential statistical modeling in Python
	10.2.1. Ordinary Least Squares (OLS) linear regression
	10.2.2. Binomial logistic regression
	10.2.3. Multinomial logistic regression
	10.2.4. Structural equation models
	10.2.5. Survival analysis
	10.2.6. Other model variants

	11. Power Analysis to Estimate Required Sample Sizes for Modeling
	11.1. Errors, effect sizes and statistical power
	11.2. Power analysis for simple hypothesis tests
	11.3. Power analysis for linear regression models
	11.4. Power analysis for log-likelihood regression models
	11.5. Power analysis for hierarchical regression models
	11.6. Power analysis using Python

	12. Further Exercises for Practice
	12.1. Analyzing graduate salaries
	12.1.1. The graduates data set
	12.1.2. Discussion questions
	12.1.3. Data exercises

	12.2. Analyzing a recruiting process
	12.2.1. The recruiting data set
	12.2.2. Discussion questions
	12.2.3. Data exercises

	12.3. Analyzing the drivers of performance ratings
	12.3.1. The employee_performance data set
	12.3.2. Discussion questions
	12.3.3. Data exercises

	12.4. Analyzing promotion differences between groups
	12.4.1. The promotion data set
	12.4.2. Discussion questions
	12.4.3. Data exercises

	12.5. Analyzing feedback on learning programs
	12.5.1. The learning data set
	12.5.2. Discussion questions
	12.5.3. Data exercises

	References
	Glossary
	Index

